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FOREWORD

The Department of Agriculture has often been urged to do more
“basic” or ‘“fundamental’” research. It has also been urged to do
inore research to provide information needed in formulating policy
and operating programs. The study here reported responds to both
these recommendations. It is an analysis of fundamental economic
principles for managing a public storage program for grains.

Since it is basic research, it does not tell how many bushels of
wheat or corn should be placed in storage or withdrawn from storage
this year or next year. Rather, it develops rules that the adminis-
trator of a grain storage program—with the help of his economic and
statistical advisors—can apply for deciding how much to store or
release in any given year.

A public storage program may have a single objective or a combi-
nation of objectives. Among the purposes that have been talked
about for such programs are stabilization of supplies from year to
year, stabilization of prices, stabilization of producers’ returns, safe-
guarding against national emergency, getting the greatest return for
producers, supplying consumers’ needs at lowest cost, and maximiz-
ing the “public benefit.” The example worked out in this study as-
sumes the last-named objective. Also, it assumes that the area under
the demand curve can be used as an estimate of public benefit. In
this particular case, the study shows that the optimum storage pro-
gram would be identical with the program we would expect private
industry to carry out if there were pure and perfect competition.

But while the example is worked out in terms of the area under
the demand curve, the general principles of this study could be ap-
plied in any case where both the objectives and the cost of the pro-
gram can be stated in definite and quantitative terms. Given any
sort of ‘“value function,” this study shows how to take into account
such factors as the initial supply on hand, prospective acreage and
variability in yield in future years, characteristics of demand for the
product, and costs of storage, including both handling costs and
interest on the money invested.

This study was carried on at the University of Chicago in large
part under contract with the United States Department of Agricul-
ture. It makes a substantial addition to our understanding of rela-
tionships relevant to sound management of & storage program.

FrepErIcK V. WAUGH,
Director, Agricultural Economics Division.

WasHingTON, D. C, Issued October 1958

For sale by the Superintendent of Documents, U. 8. Government Printing Office
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CARRYOVER LEVELS FOR GRAINS

A Method for Determining Amounts that are Optimal Under
Specified Conditions

By RoBEerT L. GUSTAFSON, Assistant Professor of Economics, University of Chicago?!

SUMMARY

The idea that annual fluctuations in supplies of grains and other
storable agricultural commodities can or shode be evened out through
the medium of year to year storage is thousands of years old. Despite
the existence of a considerable body of literature on the subject, how-’
ever, the following important questions have not been fully and
rigorously answered: (1) In any year—or better, in each year of a
contemplated period of years—exactly how much grain shoufd be put
into or removed from storage, given the best available information on
the conditions that are relevant to making such a decision? (2)
Given the quantity of grain that is to be stored in the nation as a whole
in any year, what is the best regional distribution of that quantity of
storage, that is, where should the grain be kept and in what amounts?

For complete mathematical rigor, both the national and the regional
aspects of the storage question should be answered simultaneously.
A mathematical solution for optimal multiregional rules is given. It
turns out, however, that even for the simplest case—that is, a 2-year,
2-region model—the computations would be formidable except on a
high-speed electronic computer. The bulletin, therefore, is concerned
chiefly with methods of determining optimal storage policy at the
national level.

Decisions made by farmers and the trade with respect to quantities
to be carried over from one period to another chiefly depend on their
expectations of relative current and future prices. Decisions on the
part of governmental agencies with respect to storage policies generally
reflect other sorts of considerations. Here the goal may be to even
out supplies, to assure minimum stocks to meet emergency require-
ments, or to maintain stable returns to producers. The examples
given 1n this bulletin relate chiefly to obtaining a storage policy that
will result in the maximum net benefit to the general public, when
total benefit is measured as the area under the demand curve, although
the general approach used could be applied to several alternative goals.

This bulletin is concerned basicalfy with procedures that can be
used to even out supplies of grain by varying the quantity carried
over from year to year. In actual practice, stabilization proposals

1 This work was started and in considerable part completed while the author
was a Research Assistant at the University of Chicago. Richard J. Foote of the
Agricultural Marketing Service gave substantial assistance in preparing the
report. Helpful advice was received from several people at the University and in
the Department of Agriculture, including in particular K. A. Fox, I. Herstein,

. D. G. Johnson, J. Marschak, T. W. Schultz, G. Tolley, and W. A, Wallis,
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seldom rely only on storage. Instead, in times of surplus, use is also
made of export subsidies or other export disposal programs and of
domestic diversion programs. A research program currently in prog-
ress is considering the relative costs and gains to farmers and the
general public of alternative combined programs, and of a storage
policy designed primarily to support prices of particular commodities
at desired levels as contrasted with the procedures developed in this
bullelfiin, which are designed primarily to even out year-to-year
supplies.

efore applying the methods, we must first make some judgment
concerning the value to the general public of consuming afternative
amounts of grain in various years. Here we are concerned essentially
with the relative value obtained by consuming a fairly stable quantity
of grain in each of several years, or of consuming the same total quan-
tity over the entire period but in variable amounts from one year to
the next. One way of making a rough estimate of the value of con-
suming a specific amount of grain is to take the area under a demand
curve. This procedure frequently has been followed by economists
in the past, and it is used in most of this report. However, the
general approach used to derive the rules developed here can be ap-
plied to any method of measuring total value so long as this value
can be expressed as some sort of ?unction of the quantity consumed.

Having defined the total value to the general public in each year
as a function of the quantity consumed in that year, we note that the

uantity consumed in turn is equal to the initial supply, that is, pro-

uction plus beginning stocks, minus the carryover. We next define
net benefit in any year as the total value less costs of storage, includ-
ing interest on the investment. In any given year, then, for a given
level of initial supply, determination of the carryover determines each
of the following: The quantity consumed (supply minus carryover),
total value (a function of quantity consumed), cost of storage (a func-
tion of the carryover), and the net benefit (total value minus cost of
storage). Thus, all of these variables, in particular the net benefit—
with which we are primarily concerned—depend on or are determined
by the level of initial supply and the level of carryover. Hence, if it
is possible to specify some functional relationship between the carry-
over and the initial supply, then the relevant variables, including net
benefit, are determineg by the initial supply and the specified func-
tional relationship. Such a relationship between supply and carry-
‘'over we shall call a storage rule. It may be thought of as a table in
which, for various possible different levels of supply, the corresponding
carryover is given; or as a graph on which the same information 1s
specified; or in some cases possibly as a mathematical formula.

The first question that suggests itself is whether it is possible to
specify, and to determine the values of, such storage rules. One of
tge objects of this bulletin is to show that it is not only possible, but
indeed necessary, to specify such relationships or rules, under the
conditions and objectives stipulated; and also to show how the values
of the rules can be obtained. .

A storage policy for a period of years is defined as a set of storage
rules, .one for each year. If we consistently follow a set of storage

.rules, the net benefit in any year depends on the initial supply and
the rule for that year. The supply is equal to beginning stocks plns
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production. Beginning stocks, in turn, depend on the supply and
the storage rule applied in the precedinﬁ] year; hence it is necessary,
in general, in analyzing the storage problem, to think in terms of sets
of storage rules rather than an isolated rule or level of storage for a
single year. Furthermore, levels of production in future years are in
general not known; we get around this difficulty by making use of
their estimated probability distributions. Using these pr(?bability
distributions, it 18 conceptually possible, for a given set of storage
rules, to obtain an average, or ‘“mathematically expected’”’” value for
the net benefit in each future year. Applying an appropriate discount
factor for each year to obtain the ‘‘present value’’ of the benefits,
we add together and obtain the sum of discounted expected net béne-
fits in all future years. An optimal storage policy, as given in this
bulletin, is defined as that set of storage rules which maximizes the
sum of discounted expected net benefits in all future years (or, in
some cases, for a specified number of future years) for any given
initial suppiy of grain in the initial year. The resulting storage rules
state how much grain should be carried over into the following period
given the initial supply for the current year. S
Material in the ]l);)u]letin is concerned primarily with methods for
obtaining such rules; institutional, administrative, or statutory
arrangements required to bring about the storage of such quantities
are considered as outside its scope. It is shown, however, that, under
certain conditions, the operations of private firms in a competitive
market will result in the storage of quantities called for by the optimal
rules. It should be noted that the methods for obtaining the rules
developed here in general do not, for reasons of mathematical and
computational feasibility, follow directly the procedure which might
be suggested by the preceding paragraph; the discussion there is partly
conceptual, the purpose being to outline the nature of the criterion of
optimality; one of the objects of the bulletin is to present methods
which are mathematically and computationally feasible and which
will result in storage rules that do satisfy the criterion. o
Methods by which alternative conditions can be incorporated into
the rules are given. For example, allowance could be made for
anticipated future variability in domestic demand if this could be
measured. Likewise, the rules can be modified to maximize expected
gains to a particular sector of the economy, such as farmers, if this
appears desirable. Or they may be designed to stabilize prices rather
than quantities utilized, as in the empirical examples shown. The
general approach outlined is general enough to be applied to many
different conditions and criteria. Thus, for example, the method of
solution can readily be modified or extended to allow for the effects of
foreign trade on the relevant conditions. However, for the sake of
simplicity and because of some uncertainty about the accuracy of
available estimates of future demaad and supply conditions in foreigh
countries for grains (such as wheat), for which such estimates would
be important, the empirical applications presented in this bulletin
are confined to storageable commodities (namely, feed grains) for
which net foreign trade is small in relation to total domestic use.
Storage rules for feed grains under 12 sets of alternative conditions
are shown both in table and chart form. The charts are designed to
show the effect on the rules of alternative assumptions about specified
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conditions; they show that similarities, other than level, are greater
than differences, even for the wide variety of conditions for which
rules are computed. An equilibrium level for each rule is given in the
table. It can be thought of as an average level around which the
yearly carryovers over a long period tend to fluctuate for a given
storage rule. The carryover that would be reached following two
bumper crops also is given. Equilibrium carryovers for the corn
equivalent of all corn, oate, and barley vary among the different rules
from an approximate minimum workingstock level of 200 million
bushels to 578 million bushels; the corresponding carryovers following
two bumper crops vary from 774 to 1,656 million bushels.

Some knowledge of mathematics and probability calculus is required
to derive the mathematical solutions upon which the storage rules are
based; but, computation of the rules for particular empirical appli-
cations requires only numerical iterative procedures. In some cases,
the required computations become extensive, and a shortcut method
for approximating a rule under specified conditions is given. The
shortcut method requires the use of relatively few arithmetic opera-
tions. Examples are shown to illustrate that the shortcut method
results in a rule that is nearly the same as that computed by the more
exact iterative method.

The basic principles that underlie the rules and some general con-
clusions with respect to storage that can be drawn from them are dis-
cussed in detail in nonmathematical terms; these sections of the
bulletin require only a limited knowledge of mathematical symbols
and operations. athematical solutions for the storage rules and
certain special relationships that pertain to the storage problem then
are given for the use of research workers who may have an interest in

them.
INTRODUCTION

From a standpoint of national policy, storage is important chiefly
because of fluctuations in supply and demand through periods that
extend up to several years in length. If neither production nor
quantities needed for consumption varied, a uniform amount would
be produced and consumed in each year and only minimum working
stocks would be carried over from one year to the next. We all know
that for grains, in particular, production changes greatly from year to
year, reﬂgercting chiefly variations in yield due to weather. In some
recent years, production also has been affected to a significant extent
by Goverament regulation of acreage. Year-to-year fluctuations in
demand in general are less violent. But at times, as during or imme-
diately following a major war, material changes may take place and
may affect consumption for several years. Other factors, such as
changes in taste and technology, are of perhaps greater importance in
bringing about long-run changes in supply and demand.

This bulletin describes analytical techniques that deal with the
question: For the nation as a whole, in any year, how much grain
should be put into, or removed from, storage, given the best available
information on conditions which are relevant to making such a
decision. Results of applying the method to obtain storage rules for
total feed grains in the United States which are optimal under specified
alternative assumptions are shown.
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The term ‘‘storage rule,” as used in this bulletin, is a statement
or formula that indicates, in any given year, how much should be
carried over into the following period under specified conditions.
An optimal set of storage rules is a set of rules that achieves specified
desired objectives, which, because of uncertaint‘y about relevant
future conditions, are usually stated in terms of “expected values’
of specified variables over a period of years.

Conditions that are relevant in making decisions with respect to
storage may be divided into three categories: Those that relate to
(1) production of the grain (supply), (2) utilization of the grain
(demand), and (3) costs of storage and the interest rate (or the rate
at which future costs and returns are discounted to get their present
value). An explicit solution of the storage problem also must specify
a criterion of optimality, by which is meant the end or objective in
view. Because of the diversity of possible ends, any solution to the
grain storage problem obtained by economic analysis alone must be
a ‘‘proposed’’ solution; the actual choice of a policy must depend
on the choice of objective. But with a given criterion of optimality,
the economic analyst can provide what appears to be a “best’’ solution
to the storage problem and the method outlined here is sufficiently
general to be applied to many different criteria.

OPTIMAL STORAGE RULES AT THE NATIONAL
LEVEL

A CRITERION OF OPTIMALITY

The criterion adopted here is the maximization of expected gain
(or equivalently, the minimization of expected loss) to the general
public arising from grain-storage operations over a period of years,
where the ‘‘gain’ is defined as specified on page 17, and where
‘“‘expected’’ means ‘‘the mathematical expectation of”’ or “the mean-
of the probability distribution of.” This criterion is believed to be
generally acceptable, and it presumably underlies, implicitly or ex-
plicitly, most discussions of grain storage and related problems. The
criterion can be discussed from three viewpoints:

1. Use of expected values implies that probability calculus is relevant; that is,
that quantities which are not known with certainty can be treated as random
variables, subject to probability distributions which are known or can be esti-
mated. In the grain storage problem, as treated here, the main emphasis (at
least initially) is on the element of uncertainty introduced by fluctuations in
future yields per acre. On the basis of existing historical and technological data
on yields, the construction of reasonably good estimates of probability distri-
butions of future yields appears to be possible. To the extent that future fluctua-
tions in other relevant variables (for example, demand, or acreage planted) can
be treated as random (that is, subject:to a known probability distribution),
such fluctuations can be introduced explicitly into the solution.

2. The gain to be maximized is intended to be the gain to the general public,
rather than to some particular sector of the economy, such as farmers or grain
dealers? However, the method of solution can be readily modified to maximize
expected gains for any particular sector, if desired.

2 For a discussion of the theory of storage and an examination of possible
alternative objectives, see Johnson (6, ch. 10)* and the accompanying bibliog-

raphy.
*Throughout this bulletin, italicized numbers in parentheses refer to Literature
Cited, p. 64.

446979°—58——2
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3. The criterion used here is stated in terms of net gains or losses arising from
changes in quantities stored or utilized, rather than in terms of price stabilization.
It is clear, however, that a program that partially or fully stabilizes quantities
utilized is equivalent to a program that partially or fully stabilizes prices, given
no change in the general price level or the level of demand. The carryover rules
d:lternuned in this bulletin can easily be converted into equivalent price-setting
rules.-

The discussion in this bulletin pertains to the determination of
desirable quantities to be stored under given circumstarces, with
little attention devoted to the institutional, administrative, or statu-
tory arrangements required to bring about the storage of such quan-
tities. Once the optimum amount to be stored is determined, the
actual storage of that amount could be effectuated by various means
for example, by (1) outright governmental purchase or sale of the
grain ang storage by a governmental agency; (2) a price-setting,
government-loan program to control private holdings of the grain;
or perhaps (3), under some circumstances, simply improvement in
information and stablhty of expectations in a free market for grains.
Relations between ‘‘optimal” storage rules and storage activity that
would tend to occur in an “idealized” free market are considered
on page 48.

PROPOSALS WITH RESPECT TO GRAIN STORAGE THAT
HAVE BEEN MADE PREVIOUSLY

The level-of-storage approach.—The usual approach to the grain stor-
age problem is in terms of a “level of storage.” The analyst attempts
to determine how much grain would have to be available from storage
to offset the effects of certain contingencies such as a low yield or series
of yields, or a war. He then estimates the average time for which the
stocks would have to be held and the costs of holding the stocks over
this period, and weighs such costs against the estimated benefits.
Since the cost of holding sufficient stocks to offset any conceivable
contingency, or even an actual unusual occurrence such as the droughts
of the mid—1930’s, turns out to be prohibitive, some compromise with
the ‘‘ideal” of a complete offset must be made by an arbitrary method,
and a “level” is arrived at which is adequate partially to offset certain
contingencies. This approach has been used, for example, by Shepherd
(10) and the authors of a recent Congressional report (12).

The author of this bulletin believes that such an approach is neces-
sarily an inadequate solution to the storage problem. The reasons for
the mnadequacy may be summarized under the following points:

" 1. From the standpoin} of an administrator who has to make actual storage
decisions, a policy stated in terms of levels is almost meaningless. Under such a
policy he knows only that he must operate in such a way that in the long run the
amount in storage will tend toward the stipulated level, but this provxdes llttle

guidance in determining how much to add to or subtract from storage in any given
year. Suppose, for example, that stocks at the beginning of the current crop year
are 10 percent below the recommended level, and the harvest in the current year
is also 10 percent below normal. Should stocks be increased to bring them toward
the recommended level (and if so, by how much), or should they be depleted further
in order to augment the short crop (and if so, by how much)? A “level of storage”
poliey is of little help in answering such a question. What is needed is a rule of
storage which indicates, for any specified level of stocks at the beginning of the
year (carry-in) and any harvest, what amount should be added to or taken from
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stocks dlulmng the year or, equivalently, what the level of stocks should be at the
end of ‘the year, that is, the carry-out. -

2. The economic analyst is faced with an analogous situation, but the argument
may be carried somewhat further. In this situation, we are trying to analyze how
to divide an existing supply of grain between current and future use in such a wa,
as to maximize the expected benefits to be derived from the use of the grain, bot
present and future, less expected costs. The answer to this question is a rule of
storage, applicable this year. But the answer depends, in general, on how the
grain is used in those future years and, in particular, on how it is distributed among -
those future years. Thus, it depends on the storage rules that are in operation in-
" those years: - We can say, then, that a storage policy intended to minimize losses
or maximize benefits must be in the form of a set of storage rules. And, as we shall
see, a straightforward, logical, and computational application of the criterion of.
maximizing the sum of discounted expected gains arising from storage operations
results in such a set of rules. A storage policy stated in terms of a desired level
of storage, on the other hand, never can be shown to be optimal, that is, no objec-
tive way exists for showing that one level is better than another.

Three modifications or additions to the above argument should be

mentioned: :

1. Anyone who discusses the determination of proper levels of storage obviously:
has in mind that the stocks will be manipulated in accordance with some kind of
not-formally-defined ‘‘rule,” that is, presumably, stocks generally will tend to
build up in years of good creps and be degleted in years of poor crops. But this
ruleinllnu!}t be formally defined and quantified in order to make storage operations
optimal. .

2. Once the storage rules are determined, in some cases we can define and cal-
culate, from the rules, what might be termed an ‘‘equilibrium” storage level, that
is, a level toward which stocks tend, on the average and in the long run, when the
rules are applied. In this way, storage rules can be related to, or compared with,
what may be an intuitively more understandable concept of storage levels.

3. Suppose the criterion of maximizing expected gain is in fact rejected, and
instead, for military reasons or otherwise, it is desired to have on hand at the end
of a certain period (say 5 years) a specified level of reserve stocks. The problem is
to determine the best way to build stocks to that level. Again we need a set of
storage rules, and the method given here can be directly applied to such a problem.,
But a better way exists—as shown on page 57 to adjust storage policy to provide
for the existence of military or other contingencies than simply building stocks to
a predetermined level at the end of a period of years.

Storage rules based on a plausible functional form.—Granted, then,
that the problem we face is the determination of good storage rules,
where a rule for a given year is defined as a function which states, for
each possible quantity of available supply, or harvest and carry-in,
what should be the carry-out, the next question that arises is how to
solve that problem. The simplest approach might appear to be (1) to
assume 8ome plausible functional form for the rule, (2) to calculate
expected costs and benefits under the rule, such expected values bein,
functions of the coefficients or parameters in the rule, and (3) to ﬁng
those values of the parameters that minimize net expected losses or
maximize net expected gains. '

Two general objections to this procedure are:

1. We have no way of knowing whether an assumed form is really a good one,
even though it may appear plausible. It is clearly preferable to have & pro-
cedure that requires no assumption as to form; as we shall see, such a procedure is,
in fact, mathematically available. .

2. Exltcept- in the simplest cases, computations required to find expected costs
and gains as functions of parameters in the rule and of the current level of supply
over a period longer than a few years may become quite extensive. R
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The following forms of rules have been suggested as having consider-
able “plausibility appeal:”

1. Let the carry-out be a fixed (determinable) proportion of the total supply, or
of the total supply minus the minimum- possible harvest [see Rosenblatt (8)].
Serious objections to the application of Rosenblatt’s results in the determination
of actual storage policy are outlined in Appendix Note 2. The criticisms there
may be taken as illustrative of the dangers of assuming in advance a particular
parametric or functional form for the rule. '

2. Divide stocks into two categories, one for offsetting relatively minor or
“normal’’ fluctuations in yields and the other, a reserve to be used only in case of
serious drought, that.is, when yields fall below some critical level. The assump-
tion implicitly underlying such a policy is presumably that the utility- or demand-
function is discontinuous. Such an assumption, however, can be directly.incorpo-
rated into the solution outlined, beginning on page 40, without the necessity of
setting up two categories for stocks.

Storage rules for which the amount added depends on deviations in size
of crop from normal.—Another possible form of storage rule which has
been considered is to make the amount added to storage a function of
the amount by which the current year’s harvest deviates from normal.
The simplest function of this kind is a constant proportion. The idea
underlying such a rule is that we face a certain variability of output
which we want to transform into a smaller variability of quantity
utilized. Such a transformation could theoretically be made by the .
kind of rule suggested. The objections to such a rule are:

1. It is operationally and analytically unsound, in the sense that it assumes that
the decision as to how much grain should be added to storage this year can be
made rationally while completely ignoring the amount already in storage.

2. Since the first few years of operation of the rule may be years of poor crops,
in which case the rule will call for removing grain from storage, such a rule could
be put into operation only at a time when existing stocks already are large,
whereas a rule, to be %enera].ly useful, ought to be operational under any initial
condition of supply. urthermore, determination of the necessary level of initial
stocks to make the rule workable must be probabilistic, since the initial stocks
necessary to be completely certain that the rule could be worked for an indefinitely
long period would be indefinitely large. Moreover, no obvious criterion exists for
determining what should be the level of probability which one is willing to stipulate
for the workability of the rule. (For further details, and a concrete.example;-see
Appendix Note 3.)

3. Under a rule of this kind, an error in the estimate of the probability dis-
tribution of yields or its equivalent, an undetected change in the conditions of
production, can lead to a system that ‘“runs away.” For example, if the estimate
of the mean of the distribution is too low, stocks tend to build up indefinitely,
whereas if the estimate is too high, stocks tend to decline to zero.

An approach based on an idealized free market.—Another possible
approach to the storage problem is to construct a model designed to
approximate the working of an idealized free market for grains, that
is, a market in which all stocks are held by private firms, operating
under perfect competition and maximizing expected profits. In a
later section we see that, under certain conditions, the aggregate .
amounts stored in such a market can be calculated, using girrectly
the methods presented in that section. Under these conditions, the
rule becomes a description of market behavior instead of a means
for decision making. The results can be used either (1) as the basis
of an optimal rule of storage, assuming that what happens under the
conditions outlined is desirable for the general public, or (2) as a basis
for estimating the extent to which aggregate amounts stored under
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actual (historical) market conditions have deviated from the amounts
that would have been stored under the so-called “ideal’”’ conditions.

THE STORAGE PROBLEM STATED MORE PRECISELY

“Storage’’ throughout this discussion means year-to-year carryover,
the presumption being that distribution of the product among years
is the serious problem, whereas distribution within a year, given the
total amount to be utilized during the year, is relatively trivial from
8 policy viewpoint. At the beginning of a given crop year (say on
October 1 for corn, or July 1 for wheat) we know the amount of
carryover from the preceding year (C,_;), and we can estimate fairly
acctrately the amount of the crop in that year (X;).®! The total
supply (S:) is the quantity available for utilization and carryover.
The problem is to determine what the carryover should be at the
end of the given year (C.), given the relevant conditions of demand,
supply, cost of storage, and the interest rate. The quantity utilized
(Y,) is, of course, simultaneously determined, as is the amount added
to or subtracted from storage (C;—C;_;). These relationships are
expressed by the equations:

St=Ct—l +Xt (1)
Yt= St—Ct (2)
=Ct—l +Xt_0t (3)

A ‘“rule of st.orage,” as used here, is simply a function (6,) which
explicitly states the way in which C; depends on C,_; and X, that is:

Ct= Gt(Ct_l, Xt) . (4)

~At-this point we do not specify anything about the nature of this
functional relationship. Later we see that most, if not all, optimal
storage rules are nonlinear and that the algebraic expression of the
relationship is moderately complex. A “‘storage policy’’ for a period
of n years (t=1, . . ., n, where the current year is designated as 1)
may {e defined as a set of storage rules for those years (6, . . ., 6,).
Qur problem, then, is that of finding a “good’’ policy for a given num-
“ber of years (n=2). Storage rules or policies which are optimal

uPder statgd conditions are designated by a circumflex, thus: é, or
6, . . ., 6,).
We act;uallyAmay be primarily interested only in what to do in the

current year (6,), but determination of the best 6, in general depends
upon O, . . ., O, so they also must be determined. Under the
assumption that all relevant conditions and criteria are unchanging
through time, sometimes referred to as an assumption of “station-

arity,”’” we have é,=éa= s ad infinitum, and the problem is to
.determine the best single rule 6, to be applied each year.

3 For a list of the important symbols used, see Appendix note 1. Each symbol
: is.defined, however, as it is introduced.
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SOME SIMPLIFYING RESTRICTIONS

This study initially was primarily concerned with storage as a
means of offsetting fluctuations in yield. To simplify the analysis,
we initially assume that the following are known with certainty:
(1) The basic demand curve for the grain, (2) the cost of storage for
various quantities stored, and (3) the acreage to be planted. We
need not specify that the conditions are the same in each year but
only that, if they do change, we know how they will change. Ignoring
random or unpredictable fluctuations in acreage initially can be justi-
fied in part by the fact that, prior to price support programs, the
effect on production of changes in acreage for most grains was small
relative to the effect of fluctuations in yields.* The effect on optimal
storage rules of introducing random or unpredictable fluctuations in
demand or acreage into.the solution is discussed on page 51.

For purposes of facilitating both analysis and discussion, we first
consider a desirable storage policy for the country as a whole, that is;
we initially ignore the existence of interregional differences and rela-
tionships. To do this, we set up two forms of restrictions as a frame-
work for our analysis. The first form, designated as restriction: I, can
be stated in two alternative ways; the second form, designated as re-
striction II, can be stated in three alternative ways. These alternative
statements are not necessarily equivalent, but any one of them will
satisfy the requirement in each case. Nor are these conditions neces-
sary, but only sufficient; one easily could think of other statements of
conditions which would satisfy the requirements.

Restriction I.—Either of the following: , .
Ia: No grain of the kind for which the storage problem is being
considered, or a substitute therefor, is imported or exported.
Ib: Imports and exports are known in advance (predictable with
certainty and independent of the amount of storage). Ib of
course, inciudes Ia as a special case. S

Restriction I11.—Any one of the following:

ITa: The cost of transporting the grain within the nation is
Zero.

IIb: All of the storage for the grain is located at a single point
in the nation, or within a single region within which transport
costs for the grain are zero.

IIc: All of the grain (1) is produced at a single point or within &
single zero-transport-cost region and (2) is consumed at the
same or a different single point or within a single zero-
transport-cost region.

Although these restrictive conditions are never completely satisfied
in the real world, they may be approximately satisfied for certain
grains. If so, application of the results given in the first section should
give a storage policy that is a reasonably good first approximation to
the optimal—at least a better approximation than is possible, except
by chance, by the use of other existing techniques. Approximate
satisfaction of restriction I, for example, means that unpredictable

‘t Fgr further comment on this point, and some illustrative data, sée.Appendix
note 4. .
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fluctuations in exports and imports are small, relative to total pro-
duction or consumption of the grain. Similarly, restriction II' is
approximately satisfied if all but a small portion of the grain is stored
in one small subregion, or if the relevant cost of transport is small
relative to the sum of storage cost plus interest charges. For all feed
grains in the United States, for example, fluctuations in net imports
in recent years typically have been between 0 and 2 percent of total
domestic production; and, though production, utilization, and storage
occur throughout the country, they tend to be concentrated in the
North Central States, where, for example, more than 80 percent of
total October 1 stocks of corn are typically held. it

Furthermore, biases in the computed storage rules that are caused
by assuming that both restrictions I and II are true, when, in fact,
they are not, are in opposite directions, so that they at least partially
offset each other. That is, the assumption of restriction I results in
rules which prescribe “too much’’ storage, since holding exports and
imports constant means that effective demand for the domestically-
produced grain is less elastic than it would otherwise be; whereas the
assumption of restriction II results in rules that typically prescribe
“too little” storage.

With all the above considerations in mind, a direct application of
the analysis of this section to the storage problem for total feed grains
in the United States should give a fairly close approximation to optimal
storage policy; accordingly, the empirical applications are made to
those grains. ' '

Finally, it should be mentioned that, while a complete solution'of
the multiregional storage problem involves a formidable computational
and empirical complexity, relaxation of restriction I can be allowed for
with only a relatively minor modification of the “model,” provided
adequate empirical information is available about foreign demand;
supply, and storage policy.5 : T

Naturally, the approach developed here is equally applicable to a
commodity produced and consumed within a smaller self-contained
region.

CONDITIONS USED IN DEVELOPING AND APPLYING |
THE RULES ‘ o

As already indicated, the conditions which are relevant and which
must be estimated prior to the derivatiou of storage rules are the fol-
lowing: (1) A discount factor which equals 1/(1+r), where r is the
interest rate.  This is the present value of one dollar due the following
year, and reflects the fact that whenever commodities are held in
storage, an amount of capital equivalent in value is unavailable for in-
vestment elsewhere. (2) The direct cost in dollars of carrying over the
quantity stored for one year. Naturally, this total depends on the
quantity stored, though certain fixed costs regardless of quantities also
may be involved. (3) The total value, measured in dollars, attribut-
able to the use of the variable quantity available for consumption (Y)

5 A solution that incorporates foreign trade was obtained and applied to com-
pute national aggregate storage rules for wheat in an unpublished manuscript
entitled “The Storage of Grains to Offset Fluctuations in Yields” by R. L. Gustaf-
son. The general approach is summarized in Note 12 in the Appendix. o
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in that year. (4) The probability distribution of yields per acre, since
we have specified that the acreage is known.

In some cases it may be more convenient and more illuminating to
use a marginal value function instead of the total value function.
For readers unacquainted with calculus, we note that the marginal
value function, or first derivative of the total value function (assuming
that the derivative exists), is somewhat analogous to, and in some
cases may be taken as identical with, a market demand curve, prop-
erly defined. (See pages 13-15.) Mathematical derivations of
optimal storage rules for each of these value functions are given, but
our initial presentation of the solution is in terms of the total value
function, as the exposition and proofs are more straightforward in
those terms.

The meaning of each of these conditions, and problems involved in
mesasuring them empirically, are discussed in the following paragraphs.

The discount factor.—The discount factor is simply a transformed
expression for the interest rate; but the question arises, What is ‘“the”
appropriate interest rate to use? In a free capital market, the appro-
priate value is the rate of return that the capital resources used in the
storage program could earn in alternative uses, so the problem is to
determine or estimate what that rate is. In a situation that involves
capital rationing, the problem may become more complex, but we
cannot here go into all the issues involved. One necessary restriction,
to make the solution feasible, is that the annual discount factor be
less than unity (that is, the interest rate be greater than zero). In
the section on applications, we assume a range of possible values of
the discount factor to obtain an estimate of the effect of such variation
on the resulting optimal storage rules.

Storage costs.—The cost of storage is here taken essentially to be
the amount of money it costs to store a given quantity of grain for a
year. Serious problems of estimation are involved, however, as
costs vary considerably in different locations and in different types
of storage facilities, and a national aggregate is desired. The approach
taken is to assume a range of possible cost estimates in order to show
the effect of variation of this sort on the storage rules.

A question may arise as to whether the money cost of storage is by
itself an adequate measure of the actual net cost to the economy of
having a certain quantity on hand at a given time. For example, a
“convenience benefit’”” may accrue from the existence of the stocks
themselves which, if it exists, should be subtracted from the mone
cost of storage to obtain the actual net cost. The possibility of suc!
a convenience benefit may be explained as follows:

It has been observed that when stocks of grain on hand are low,
farmers and processors sometimes hold grain for use at a future: date
even though they know (via the futures market) that they could
obtain similar grain at the future date at a cost less than the current
value of what they hold. The resulting monetary loss, as it is incurred
voluntarily, is presumably offset by a convenience benefit accruing
from the holding of the grain. [See Working (14).] If benefits to
the general public correspond to these private convenience benefits
and if they could be suitably aggregated, then the resulting total
convenience benefit should be subtracted from the money cost of
storage to obtain the net cost of storage. It is possible that, by this
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adjustment, the cost of storage, for low levels of stocks, would be
considerably altered. In the empirical applications given in this bul-
letin, we do not attempt to estimate these concepts, but rather follow
the simple expedient of taking as given a fixed level of minimum
working stocks, below which the carryover is assumed never to fall.
The computed storage rules, then, refer to quantities of carryover
above the minimum working stocks. This procedure is equivalent
to assuming that when stocks fall below a certain level the convenience
benefit of stocks on hand becomes indefinitely large, whereas for
stocks above this level, the added convenience benefit is negligible.

It should be noted that the ‘“‘convenience benefit”’ being discussed
here is conceptually quite separate from and independent of the gain
to the general public concept defined on p. 17 et seq. The former
accrues from the existence of the stocks themselves, whereas the
latter arises from the year-to-year adjustment (by means of the
storage rules) of quantities utilized in accordance with changes in
supply and demand conditions.

The total value function.—This states the value in dollars, to the
general public as a whole, of utilizing the quantity Y of the grain
in the year t. The problems involved in the statistical determination
of a value (or utility) function of this sort from market data are highly
complex, and a completely rigorous solution, applicable to the real
world, probably is impossible. Nevertheless, if any storage policy is
to be adopted, some value function must be decided-upon before the
policy can be justified or made rational. In other words, before we
(that is, the general public) can decide how best to distribute quan-
tities of the grain utilized among years, we must decide what is the
value to us of utilizing alternative quantities in each of the years.
Some degree of arbitrariness or statistical approximation may be in-
evitable, but a policy which is based on even an approximate value
function is certainly likely to be better than one which ignores the
problem of evaluation. Furthermore, by making use of alternative
explicit value functions, we can determine the effects on storage
policy of making alternative choices, or of errors in the estimate, of
the value function.

In the paragraphs following, we give what appears to be the most
practicable way of objectively determining, at least approximately,
a function which states the value in dollars, to the general public as
a whole, of utilizing a given quantity of grain in a given year. But
it should be emphasized that the method of solving the storage prob-
lem which is discussed later does not depend on this particular choice
of a value function, but is sufficiently general to permit the incorpo-
ration of a wide variety of possible functions. For example, if the
Government should decide that the storage program should be oper-
ated so as to maximize the expected total revenues of grain producers,
we could, by simply setting ‘““total value’” equal to “total revenues of
grain producers’” in our solution, obtain storage decision rules which
would be “optimal” in that sense.

We define the suggested total value function by first defining a
particular kind of market demand curve, or market price-quantity
relation, for the grain, as follows: The quantity of resources used in
the production of the grain are assumed given (constant), but the
quantity of grain produced varies from year to year, owing to purely

446979°—58——3
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noneconomic forces, in particular, the weather. The grain produced,
whatever the quantity, is thrown on the market, and the maximum
price is determined at which that entire quantity can be sold and con-
sumed. That is, no year-to-year carryover is allowed. For all points
along the resulting price-quantity relation, the total productive capac-
ity of the economy, except for the quantity of the grain which becomes
available, is assumed given (constant); and the price level of all goods
and services other than the grain is also held constant. However,
-alloeations of particular cther resources and relative prices of other
goods and services are mot assumed to be fixed, but are allowed to
shift in response to the changes in the quantity of the grain, to the
extent that the market equilibrating forces in the economy do in fact
-cause them to shift within the crop year.® :

The resulting price-quantity relation is defined as the marginal
value function for the grain; it gives the per-unit value, in terms of
other goods and services, which the general public, operating through
the market, places on the grain when the total quantity is Y. By
this definition, we essentially make this value not directly dependent
on:-the income redistribution effects of the changes in the grain supply.
This appears to be the most feasible procedure, the alternative being
{0 adopt arbitrarily some interpersonal or intersectoral weighting,
such as would be implied by setting total value equal to total revenue
of ;%r'ain producers.

- Total value then can be defined as the area under the marginal
value (or demand) curve between O and Y. However, in most cases
some quantity, which can be taken as a constant, exists below which
the quantity utilized never falls. Conceptually, this quantity may
be close to zero for items that are relatively unessential in the diet
-of either human beings or animals, and considerably above zero for
dietary essentials with few substitutes. Alternatively, we may look
on the existence of this minimum quantity as simply an empirically
observed fact. Since we never can obtain observations regarding
the nature of the total value when the quantity is below this minimum,
we take these values as unknown constants which can be conveniently
ignored since, in the maximization process by which the optimal storage
rules are obtained, they have no effect on the results. We may,
therefore, define the total value function as ‘‘the increase in real national
(or regional) income which s atiributable to increasing the amount
utilized of the grain from the minimum value of ¥ (Yypin) to Y itself,
when other productive capacity s given. That is, total value is the area
under the marginal value curve between this minimum and Y.”? The
total value can be thought of as the value of other goods and services

8 Note that the demand curve so defined differs slightly from the usual defini-
tions of the (Marshallian) demand curve in that we hold neither real income nor
money income and other prices constant along the curve. The demand curve
also is defined for a relatively ‘‘short run,” and hence tends to be less elastic
than a long-run demand curve.

7 This is readily seen by considering the effect on real income of a small change
in the quantity of the grain, say dz, from an initial quantity z; the resulting
change in real income is the change in quantity times the per-unit value. Adding
up these small changes in real income between Y, and Y gives the total value.
In economic literature, this value frequently is referred to as ‘‘total social value.”
It should be noted that ‘‘total value,” as used here, does not mean ‘‘total revenue,”
‘or price times quantity consumed; it is, rather, the entire area under the marginal
value function.
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which: society is willing to give up in order to utilize the quantity Y
rather than the minimum quantity. ¥,

.. An empirical estimate of the marginal value function for feed grains.—
We:next consider the problem of empirically estimating the marginal
value function for all feed grains. We allow approximately for:
effects of changes in other productive capacity and the price level in
the usual way, namely, by including appropriate income and price
indexes in the estimation model. The main difficulty in the case of the
feed grains arises from the facts that (1) an important factor in deter-
mining within-year demand for feed grains is the beginning-of-year
level of livestock inventories on farms, so that to estimate the within-
year price function it is necessary to include this variable, which
may, for this purpose, be treated as predetermined; but (2) an impor-,
tant effect of a-change in a given year’s supply of feed grains'is to.
change the following year’s livestock inventories, so that to determine.
thetotal effects of year-to-year changes in the grain supply, such
effects on livestock inventories should be taken into account.

For example, the 5-equation model of the feed-livestock economy
developed:by Hildreth and Jarrett (§), using their limited information
estimates of the coefficients, indicates an elasticity of livestock
products produced with respect to quantity of feed grains fed of 0.22.
However, if their five equations are reduced to a single one for which
quantity of livestock products sold is made a function of quantity of
feed grains fed, quantity of protein feeds fed, and the predetermined
variables, the resulting elasticity of livestock products sold with
respect to feed grains fed is —0.03, which does not differ significantly
from zero. A similar result is obtained from the 4-equation model
developed by Foote (3). The difference between 0.22 and —0.03 -
(or zero) presumably represents the effect on the following year’s
livestock inventories of a change in a given year’s quantity of feed -
grains fed. The corresponding coefficients, using the Hildreth-
Jarrett least squares estimates, are 0.35 and 0.14, respectively.

If we take these year-to-year adjustments in livestock inventories
into account, the price of feed grains in a given year is a function not -
only of the quantity utilized in the given year but also of the quantities
utilized in preceding years. Using again the Hildreth-Jarrett model,
and holding the predetermined variables (except livestock inventories)
constant, one can determine the net effect, taking into account the
resulting changes in the other endogenous variables, of a change in
a given year’s quantity of feed grains fed on the following year’s
price of feed grains. Using the limited information estimates, the

result is:
log Pt=—1.47 log Yt+ 0.43 log Yt—l (5)

where P, is the price of feed grains in year t and Y, is the quantity of
feed grains fed in year t. The lag effect actually extends back for
more than one year, of course, but for our purposes consideration
of the l-year lag is sufficient. The least squares estimates of:.the
coefficients give:

log P,=—1.51 log Y+ 0.43 log Y,_, (5.1)

These results seem to indicate that one ought to make the mafgipal
value a function of lagged quantity utilized as well as current quantity
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utilized. This can be done fairly readily in a formal solution to the
storage problem, but the resulting computational requirements
become much greater, and the resulting storage rules more complicated.
The problem may be stated as follows: What we actually haveis a
function of the form

Pg=aoYt-.lYt.’_1 (5.2)
whereas we would like to have, if possible, a function of the form
P,=b,Y;" ©)

which, for purposes of storage policy, is equivalent, or at least approxi-
mately so, to what we actually have. Fortunately, an equivalent
function can be obtained since, for purposes of storage policy, we are
concerned with the interrelationships among P and Y in successive
years, that is, among, say, Py, Py, Yoy, and Y,.2

8 The truth of this is demonstrated by considering the following two sets of
relations:

I: Poa=a0Yei Yy
Pt =aoYt_°’Y§’_l
II: Py =bYi}
P, =b,Y;"
Take the ratio of Pi+; to P, in each case, giving, say, Rr and Ry respectively.
Then take the elasticity of this ratio with respect to Y. in each ecase, giving
respectively:
I: 81(1_8) +aq
II: b;(1—e)
where e is the elasticity of Y.4+; with respect to Y,, that is, the percent change in
Y ++: which occurs as a result of decreasing the carryover in year t t;y one percent
‘s

of Y,. It follows that the elasticity of the ratio R with respeet to Y, is the same
in cases I and II if

b1=31+18_'ze

The value of e depends on the values of Y.4; and Y,, and on the storage rule to be
applied in year t+41, but the value of e is always negative or zero. Hence,
values of b, which make II approximately equivalent to I for storage policy pur-
poses are given by

a,<bi<a;+a4
For all feed grains in the United States, it can be shown that
0>e>—2
80 that
%+%<MSM+M‘

Based on the Hildreth-Jarrett limited information coefficients,
' 1.62<b;<1.90
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Probability distribution of output.—The probability distribution of
output is estimated from observations on the variation in yield per
acre in past years, making due allowance for trends. Such data are
available from the records of the Crop Reporting Board for major
crops back to 1866. Ideally, provision would be incorporated to
allow for the way in which year-to-year variations in acreage planted
are determined 1n a free market by the interrelationship of supply
and demand factors. As'little definite information is at present
available about supply functions for grains, this refinement has not
been made. If better information on the economic determinants of
acreage planted become available, such knowledge can and should be
incorporated into the solution directly. In the meantime, the results
obtained may be regarded as first approximations, the adequacy of
which depends on the accuracy with which acreage planted in future

ears can be predicted. A further justification for initially emphasiz-
ing the fluctuations in yield per acre and neglecting variations in
acreage planted is that, except in years for which acreage allotments
are in effect, the major proportion of the variation in year-to-year
output is due to variations in yield. A final justification is that
acreage for many crops can be controlled or predicted, whereas yields
cannot, and a storage program of the sort being considered here can
be looked on primarily as a policy designed to mitigate the economic
effects of noncontrollable and nonpredictable fluctuations. :

DEFINITION OF AN OPTIMAL STORAGE POLICY

Having defined and briefly explained the conditions used in deriving
the storage rules, we now proceed to define the criterion of optimality
which the rules are intended to satisfy. First, the gain incurred in
any given year, that is, the year t, is defined as the total value of the
grain utilized minus the cost of storage for grain to be carried into the -
next year. Some readers may feel that, in the definition of gain, the
total value of the grain that would be utilized in the absence of any
storage should be subtracted out. But the effect of this change in
the definition is simply to introduce a set of constants into the system,
a condition that has no effect on the maximization process by which
we obtain the storage rules. That is, if the latter concept is thought
of as a “net gain,” the storage rules that maximize total gain are iden-
tical to those that maximize net gain. From a mathematical stand-
point, it is easier to work with the simpler concept of total gain.

Footnote 8—Continued
Using the least squares coefficients,

1.66<b;<1.94

Coefficients like b, are referred to as ‘‘flexibilities.” That is, the flexibility of
the marginal value function is the absolute value of the elasticity of marginal
value with respect to quantity utilized. We mainly are concerned with deter-
mining an “upper limit” estimate of the flexibility of the marginal value function
since, as might be expected, the higher the flexibility, the higher are the resulting
optimal storage rules and storage levels.

Use of the term ‘““flexibility’”’ is convenient to emphasize that in this context
quantity utilized is treated as the independent variable and marginal value or

rice as the dependent, rather than vice versa. That is, the flexibility of a price
gmction is the inverse of the absolute value of the “‘elasticity’’ of the same function
treated as a demand curve.
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. 'We now wish to consider the factors that determine the total gain
‘in any year. The quantity utilized depends on (1) the initial carryover
from the previous year, (2) production in the current year, and (3) the
‘carryout in the particular year. But if we consistently follow a set of
storage rules, the carryout depends on the particular rule that is
adopted. Since, with any given marginal value function, the total
value depends on the quantity utilized, this value in turn depends on
the initial supply, which is equal to the initial carryover from the
preceding year plus production in the current year, and the storage
tule. Likewise, total storage cost, for any given level of interest
rates and cost per unit stored, depends on the amount stored. Thus,
the total gain from storage depends on the initial supply and our
storage rule. R
~ In thinking about some year in the future, production cannot be
-estimated in advance but depends on the particular yield that happens
to prevail. In connection with variables of this sort, in cases where it is
felt that the variable can be treated as though subject to a probability
distribution that is known or can be estimated, statisticians use a con-
cept known as an “‘expected value.” To take an example, the expected
yield, 'in this sense, equals the sum obtained by multiplying each
possible yield by its probability of occurrence, and adding the result-
ing products.

Considering any given future year, then, we can think of applying
a given storage rule to each possible total supply in that year. The
total supply depends, of course, on the carryover from the preceding
year, acreage plianted, and yield.  The total gain from storage can
then be computed for each possible total supply, or equivalently,
taking acreage as given, for each possible carryover from the preced-
ing year and each possible yield. Next, for each possible carryover
from the preceding year, the “expecte({ gain’”’ in the given year is
obtained by multiplying the gain corresponding to each possible yield
by the probability of occurrence of that yield, and adding the resulting
products. Thus, the expected gain in any given future year, under
given conditions, depends on the storage rule applied in that year,
and on the carryover from the preceding year. Of course, the carry-
over from the preceding year depends on the total supply and the
storage rule applied in that year, and so on back to the current year.
It should also be noted that the expected gain in any given future year
'is not, in general, equal to the gain that would be computed by apply-
ing the given storage rule to the expected yield (or expected supply)
in that year.

We now define a new variable: The gain in the current year plus
the sum of expected gains for all relevant years in the future discounted
back to the current year. The size of this variable, under given
conditions, depends only on the supply in the current year and the
particular set of storage rules being applied. Finally, we define the
optimal storage policy as that set of storage rules that maximizes
this sum of discounted expected gains, for any given initial supply.

In the paragraphs that follow, total values that relate to all possible
levels of utilization are referred to collectively as the total value
function, and costs of storage that relate to all possible levels of storage
are referred to collectively as the cost of storage function. The term
“function” carries the same connotation when used elsewhere. Mak-
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ing use of this concept, the criterion of optimality is the following:
Given (1) the probability distribution of yields, (2) the total value
functions, and (3) the cost of storage functions for an n-year period
(n=2), the optimal storage policy for the period is defined as that
set of storage rules which maximizes the sum of discounted expected
gains over the period, where the gain for each year is the total value of
the quantity utilized minus the cost of storing the amount carried

over.
METHOD OF SOLUTION

The solution to the grain storage problem presented here is an
adaptation of a solution to an inventory problem developed by
Dvoretzky, Kiefer, and Wolfowitz (2). Some reformulation of the
framework and proofs was required to adapt them to the grain storage
problem. In the inventory problem, the administrator at the be-

inning of each period is given an initial stock, & cost of ordering
unction, a cost of storage function, a probability distribution of
demand (which may be based on historic data), and a penalty func-
tion which depends on the quantity of unfulfilled demand; he must
decide how much to order. In the grain storage problem the important
random variables are future harvests, and the decision is taken with
refﬁtzact to how much of currently available supply should be currently
utilized and how much carried over for future use. Another difference,
which may be important in applications in that it leads to trouble-
some discontinuities, is that in the grain storage case, unlike what may
be possible in the inventory case, we must exclude the possible ex-
istence of negative carryovers.” Finally, it may be mentioned that
the mathematical development pertaining to use of the marginal
]t;alue function (pages 44-59 and related Appendix notes) is original

ere.

We start by introducing what is perhaps the crucial aspect of the
proposed solution, that is, the device which permits us to avoid (1)
the necessity of assuming in advance anything about the forms.of the
storage rules and (2) the laborious computation of expected values
as functions of the parameters of the forms adopted. We have seen
that the determination of the optimal rule for any year depends on the
rules to be followed in succeeding years. Hence the only way to avoid
making assumptions about rules in succeeding years is to start with
the year that has no succeeding year, namely, the last year of the
period, and work backward. We do just that.

Under certain conditions, the length of the relevant period, that is,
the “time horizon,” must be assumed in advance. However, in casés

9 The interested reader also should refer to Arrow, Harris, and Marschak (1);
these authors chronologically preceded, and laid the conceptual groundwork for,
the work of Dvoretzky, Kiefer, and Wolfowitz (2), and in their work the concepts
of a utility (or penalty) function and of a controlled stochastic process were for
thebﬁrst time introduced into the English-language literature on the inventory

roblem.

P The mathematical formulation of the problem and its solution, as presented in
this bulletin, are intended to be complete and sufficient for our purposes. Our
presentation is more elementary than that of Dvoretzky et al. (2), and the
results thereby lack some generality. However, some of the ways in which the
solutions may be generalized are indicated in later sections and in the Appendix,
and the reader, once he understands the basic concepts involved, should be able
to provide the modifications required for any particular application.
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where the relevant conditions, that is, the value function, the cost of
storage function, the interest rate, and the probability distribution of
output, can be assumed to be the same in each future year, it is not
necessary to make any assumption about the relevant number of
years. The relevant criterion of optimality for these cases is the
maximization of the sum of discounted expected gains in all future
years, and, as might be expected, it turns out that the optimal storage
rule is identical in each year. The mathematical method then itself
conver%es to this single optimal rule which is applicable every year.

To illustrate the procedure, we first consider the general case, that is,
the one for which the storage rules can vary from year to year. (1)
We first determine the rule for the nth or {ast year in the following
way: For all possible total supplies at the start of the year, we find
that carryout that maximizes the gain. This is our storage rule for
that year. Given the rule, the maximum gain depends only on the
size of the initial supply. (2) We now make use of the statistical
concept of an “expected’” gain (see page 18). The expected maximum
gain depends only on the size of the initial carryin, since we multiply
all possible levels of production by their respective probabilities of
occurrence. The initial carryin for the nth year is the same as the
carryout for the year n—1. For every possible level of supply in the
year n—1, we find that carryout that will maximize the sum of the
gain in that year and the discounted maximized expected gain in year
n. By the same reasoning as used previously, the expected maximum
value of -this figure depends only on the size of the carryout in the
year n—2. (3) Using the same procedure, we continue back to year
1, whereupon we have determined a set of storage rules, one for each
-year, which maximize the sum of discounted expected gains for the
entire period.

Cases where the value function, cost of storage function, interest
rate, and probability distribution of output can be assumed to be the
same in each future year are called cases of “stationarity.” In such
cases, as already indicated, the optimal storage rule is also the same
in each year. This single optimal rule can be shown to be the unique
solution of a single equation.’® The computations required to obtain
the solution, however, are, at least in the general case, of the iterative
type analogous to those used for cases of nonstationarity. The main
dsilgerence 1s that, in cases of stationarity, the iterations are continued
until convergence is achieved.

Such an assumption of stationarity is not as restrictive or unrealistic
as might at first appear. For computational purposes, we assume
that the conditions are unchanging in all future years. But the
optimality of the resulting rule, as applied to the current year only,
does not require that the conditions in fact remain unchanged in all
future years; all that is really required is that the same storage rule
applies in the next succeeding year. Such a condition is satisfied if,
for example, the storage rule for the next succeeding year is also
ca.lculate(f assuming stationarity and using the same estimates of the
conditions as are used this year. Of course, if it is known in advance
how the conditions will change in future years, such knowledge should
be incorporated directly into the solution.

10 For mathematical proofs, see pages 40-47 and 74-80.
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Complete mathematical solutions, using both the total and the
marginal value functions, are given beginning on page 40. These are
followed by a discussion of some special mathematical relationships
of interest to the economic analyst. As these sections require a
rather advanced knowledge of calculus, we first show the results of
applying these methods to obtain stora%e rules for feed grains, then
summarize some general conclusions with respect to storage that can
be developed by examining the mathematical nature of the rules,
and finally show a method of obtaining approximations to the rules
that requires only a use of direct arithmetic operations.

APPLICATIONS TO FEED GRAINS

In this section results of some computations of optimal storage
rules for “corn equivalents” of aggregate feed grains for the United
States are shown. -The feed grains are here taken to be corn, oats,
and barley. Sorghum grains were omitted because of a lack of
adequate information on acreage planted for grain. Ideally, sorghum
grains used for feed should be included, but the effect on the final
results would be negligible, as production of sorghum grains in the
United States averages about 3 percent of the production of total
feed grains. Bushels of oats and barley were converted into corn
equivalents on the basis of their respective relative number of pounds
of digestible nutrients per bushel, as follows:

Grain Corn equivalent
of one bushel 1

Corn _ _ e 1. 000

Oats_ o l_o___ . 488
Barley_ . . 806

1 Slightly different corn equivalents are being used currently by the United
States Department of Agriculture.

The total supply of corn equivalents in each year was obtained by
converting the supply of each grain, in bushels, into corn equivalents,
in accordance with the above ratios, and adding. A different set of
conversion factors should perhaps have been used for that part of
the grain used for purposes other than as a livestock feed.

In determining storage rules for two or more grains simultaneously,
it would be theoretically preferable to set up a model incorporating
explicitly both economic substitution relations and joint probability
distributions of output, rather than to use fixed ratios of substitution
as done here. The formal solution for such a model is analogous to the
solution for the multi-regional problem discussed on page 60, with a
comparable increase in computational difficulties. Another problem
is that of empirically estimating the substitution relations. alyses
by Foote (3) and Meinken (7) indicate that the price-elasticity of
demand for corn alone, holding quantity of other feed grains fed
constant, is not significantly different from the price-elasticity of
demand for all feed grains. The corn equivalence ratios used here are
roughly equal to the average price ratios between the grains in recent

_ years.
446979°—58— 4
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All applications assume stationarity (see page 20), and independ-
ence.. Since acreage planted is thus assumed constant, the data and
computations were made more manageable by taking all quantities on
a per acre basis. Thus the probability distribution of output is the
probability distribution of yield in bushels per planted acre; total
supply, quantity utilized, and carryover are in bushels per acre; and
marginal value and marginal cost of storage are in dollars per bushel
per acre. All of these quantities can be translated into approximate
national aggregates by multiplying by 140 million acres, the approxi-
mate average number of acres planted to corn, oats, and barley in
recent years.

The probability distribution of yields was estimated from records
of the Crop Reporting Board of the actual variability of yields in the
period 1901-1950 as follows: For each year, total production of each
grain was converted to its corn equivalent, and the result was added
to get the corn equivalent of aggregate production of feed grains.
This figure was divided by the total acreage planted to corn, oats, and
barley in the given year to get the aggregate corn equivalent yield per
acre.! A 5-year moving average of a 9-year moving average was
fitted to the resulting yields, omitting the drought years 1934 and 1936,
to obtain an estimate of the trend. If x, is the actual yield in year t
and T, the trend value for that year, we let

dy=x—T, (7)

=30+ (%) [d¢+(de/T¢)30] ®)

where 30 was an estimated yield for 1954. Thus, to estimate the
variability of yields in future years, an arithmetic average of the actual
and the relative deviation from trend in past years was used. This
assumption is conservative, that is, it probably gives a higher estimated
variability than may actually occur, since the trend yield has in-
creased substantially over the period. The resulting z,’s were then

ouped into one-bushel intervals centered on integers, giving the
ollowing distribution:

and

Yield per planted acre ~ Yield per planted acre

- Relative Relative

L frequency frequency

Range Midpoint f(x) Range Midpoint f(x)
x X

. .Bushels Bushels Bushels Bushels
18.5-19.5____ 19 0.02 || 27.5-28. 5____ 28 0. 06
19.5-20. 5. ___ 20 .02 || 28.5-29.5____ 29 .22
20.5-21. 5. ___ 21 .00 || 29.5-30.5____ 30 .20
21.5-22.5____ 22 .02 || 30. 5-31.5.___ 31 .14
22.5-23.5____ 23 .00 || 31.5-32.5____ 32 .10
23.5-24.5____ 24 .00 || 32.5-33.5____ 33 .10
24.5-25. 5____ 25 .02 || 33.5-34.5____ 34 . 00
25, 5-26.5____ 26 .02 || 34.5-35.5____ 35 .02
26. 5-27.5____ 27 L06 ||| feo o

u For 1901-1928, acres planted for each grain were estimated by multiplying
gcriag;;)als'\&ested by the weighted average ratio of acres planted to acres harvested
in- -50.
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The mean of the distribution is 29.46 bushels per acre; the standard
deviation is 3.03 bushels per acre. Asis typical for yields of crops, the
distribution is skewed to the left. '

The assumption of stationarity in computation of storage rules so
far as yields are concerned may be looked upon as an assumption that
average or normal yield per acre in future years will be 29.46 bushels.
The discrepancy between 29.46 and 30 is mainly due to the omission of
the drought years 1934 and 1936 in obtaining the trend. A sharp

. upward movement in the trend yield started about 1933, reflecting in
part the introduction of hybrid seed corn. Since use of hybrid seed
reached almost 100 percent within the main areas of production by
1950, it seemed reasonable to assume, when this study was begun,
that the trend would level out at something slightly above the average
yield for corn equivalents of feed grains from 1949 through 1955 of
28.7 bushels. A continued upward trend in more recent years is
believed to reflect progress in techniques of production and increased
use of fertilizer, irrigation, and other inputs of this sort. In applying
the storage rules, an upward trend of this kind could be allowed for by
changing the assumed mean yield from time to time while retaining as
a measurement of variation around the mean the long-term historic
pattern based on deviations from trend.

One way to justify an assumption of stationarity in the computa-
tions is to assume that any future trend in supply (acreage or yield)
will be partially in response to, and partially offset by, the trend in
demand, so that the resulting trend in the real price of the grains will
be small enough to be neglected for storage policy purposes. The
real price of corn over the %ast 80 years has followed a slight upward
trend, amounting to an average of roughly 0.6 percent per year.
Such a trend, if assumed to continue into the future and incorporated
into the computations of the storage rules, would have a relatively
small effect on the results.

.In all applications except one, the marginal value function is
assumed to be linear. This is mainly a computational convenience,
since empirical demand studies for corn and feed grains have generally
shown that a linear relationship gives about as good a fit to the data as
a logarithmic or constant-elasticity relationship (for example, see
Foote, Klein, and Clough (4), Hildreth and Jarrett (), and Shepherd
(10), (11)). Computations in some representative cases that have
used the two alternative assumptions indicate that the optimal
storage rule using a logarithmic marginal value function differs little
from the optimal rule using a linear marginal value function with, of
course, the same estimates of the other conditions and the same average
flexibility of marginal value in each case.

Results presented here are the computed optimal storage rules for
aggregate feed grains, under alternative assumptions about the condi-
tions, that is, the annual discount factor, the marginal value function,
the marginal cost of storage, and the distribution of yields. The
subscripts on the ¢’s designating the rules do not stand for years or
iterations, but for alternative optimal (stationary) rules, applicable
under the respective sets of conditions specified. (See table 1.)

The application intended to approximate conditions in an idealized
free market is based on a price elasticity of demand for aggregate feed
grains, 7o, of —0.50. Thus is the elasticity at Y=Y,=30 bushels per
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acre. This is consistent with, though slightly conservative with re-
spect to, the upper limit estimate of the flexibility of the marginal value
function, ee=—1/1=1.94, obtained in footnote 8 on page 16 based
on the Hildreth-Jarrett (6) estimates of the coefficients after allowing
for an annual lag effect. It also is consistent with results reported by
Foote, Klein, and Clough (4), where the elasticity of demand for
“total feed grains or possibly for total feed concentrates” is estimated
to be between —0.40 and —0.50, based on year-to-year changes. The
market price at the quantity consumed when Y=30 bushels per acre
was taken to be $1.50. This gives a market price function

p(Y)=$1.50—%0.10(Y-30)=$4.50—$0.10(Y) 9)

where Y is in bushels per acre and p(Y) is a mathematical symbol
representing the marginal value function.
To determine the effects of the possible existence of losses to the
%eneral public attributable to fluctuations in utilization not measured
y changes in market price, computations were carried through using
marginal value functions with flexibilities of ¢,=2.5 and ¢=3.33 (the
corresponding elasticities of demand being 7= —0.40 and ,=—0.30
respectively).!?

The corresponding marginal value functions are

p(Y)=$1.50—$0.125(Y —30)=$5.25—$0.125(Y) (10)
an

p(Y)=$1.50—$0.167(Y —30)=$6.50—$0.167(Y) (11)
respectively.

Effects on the optimal storage rule of changing the assumptions
about the marginal cost of storage, v/, and the annual discount factor,
«, also were determined. In section A of figure 1, 6;, 6;, 6; and 8, are
optimal storage rules that result under different assumptions about
v’ and «, when no0=—0.50. The values v'=%$0.10, reflecting a mar-
ginal storage cost of 10 cents per bushel per year, and «=0.95,
equivalent to an interest rate of 5 percent, are estimates of the ap-
proximate actual cost of storage and discount factor, respectively,
under conditions that existed in the early 1950’s. As indicated in
figure 1, the alternative assumptions were y'=$0.04 and a=0.98,
with computations made for each of the four possible combinations.
In section B of figure 1, effects on the optimal storage rule of different
assumptions about 4’ and a when 7,=—0.30 are shown.

Effects of changes in one condition in general are not the same for
different values of the other conditions, as the interaction effects are
fairly complicated. Hence the optimal storage rule usually must be
calculated anew for each change. The calculations, however, in some
cases are simplified by making use of the equivalence relations dis-
cussed beginning on page 49.

2 Reference usually is made to the inverse-flexibilities, that is, to elasticities,
since to most readers a direct comparison to the usual concept of price elasticity
of demand probably is more meaningful.
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FEED GRAINS:* OPTIMAL CARRYOVER
RULES PER ACRE

For Specified Volues of y’and @ When o= 3 Bushels per Acre, and p is Llinear

CARRYOVER (BU.)-C

I
12 | SECTION A:M,:-0.50

, 10 .
. .04 .98 ///\A 5, |2
4 //V 03
_ / .
L=
12 ’ SECTION B:M,-0.30
g ée//z
/

RULE 5 o< //
- 65 010 0.95 / 5,
6, ‘04 .98 /
4

28 30 32 34 36 38 40 42
TOTAL SUPPLY (BU.)-S

M CORN, OATS AND BARLEY, CORN EQUIVALENT
U. S. DEPARTMENT OF AGRICULTURE NEG. 4107-57 (4) AGRICULTURAL MARKETING SERVICE

Figure 1.—As would be expected, optimal carryovers are larger when cost of
storage and charges for interest are relatively low. (A high value for « eorre-
sponds to a low interest rate.)
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Section A of figure 2 shows the effects on the optimal storage rule,

6, of different assumptions about the elasticity of p, 7, when the
marginal cost of storage v’ and discount factor « are held at their
approximate actual values of $0.10 per bushel and 0.95 respectively.
ere, no was taken as equal to —0.56, —0.40, and —0.30. Section
B shows the results of similar changes when the cost of storage and
the discount factor are taken at v'=$0.04 per bushel and «=0.98.
- Section A of figure 3 indicates the effects of changing the estimate
of the variance of the probability distribution of yields when the
other conditions (p, v’ and «) are fixed at their approximate free-
market values (no=—0.50, v'=$0.10 per bushel, «=0.95). 6, is the
optimal rule under the estimated actual probability distribution F,
with standard deviation go=3.03 bushels per acre; f; is the optimal
rule under a probability distribution G, which has the same mean
and shape as F, but for which o= (5/3)00=>5.05; and 6, is the
optimal storage rule if there were no variability whatever in future
ylelds (¢=0)."* Section B presents results under similar conditions
when v'=8$0.04 per bushel and «=0.98.

Fi%ure 4 shows the effects of a linear assumption about the marginal
social value function p, as compared with results if we assume p to
have constant elasticity, where the assumptions about the other
cmllditions, v, a, 7o and F, correspond to their actual approximate
values. .

In figure 5, all the computed optimal rules are shown to facilitate
inter-comparisons.

- The optimal storage rule §(S) for each set of conditions was computed
over the range of values of total supply S, in bushels per acre, from
0 to 50 (50 being 1% of a normal crop), although the charts show values
of S only up to 42. The computed numerical values of all the rules are
given in table 1, along with the conditions applied in each case.

. The equilibrium level, C*, also is given in table 1 for each rule. An
exact definition of C* is given on page 56. However, it may be viewed
as the level toward which, for any given initial carryover, the expected
carryover in the next year tends. It also can be thought of as a
sort of average level of carryover around which the yearly carryovers
over a long period tend to fluctuate under the given rule 6. It is
particularly useful to enable the analyst to make rough comparisons
between ‘“‘average” carryover levels that result under optimal storage
rules that satisfy the criteria specified in this bulletin and carryover
levels recommended by other writers, or that satisfy other criteria.

“Minimum working stocks” are the aggregate quantity of grain
‘which farmers, dealers, processors, and so forth keep on hand to facil-
itate their day-to-day operations, no matter how small the total avail-
able supply. All carryovers shown here are quantities in excess of
‘minimum working stocks, and the latter should be added to the
‘amounts indicated if a total figure is desired. For corn equivalents

13 The factor 5/3 was chosen mainly for computational convenience in using the
equivalence relations discussed on p. 50, together with other computations using
F. This avoided the necessity of actually computing G and carrying out a solu-
‘tion independently with integrations over G.

14 This is essentially the case discussed by Williams (13).
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FEED GRAINS! OPTIMAL CARRYOVER
RULES PER ACRE

For Specified Values of 7, When o = 3 Bushels per Acre, and p is linear

CARRYOVER (BU.)-C
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Figure 2.—When the marginal value function is extremely inelastic, as for 55, the
optimal carryover is larger than when it is less inelastic,
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FEED GRAINS:*OPTIMAL CARRYOVER
RULES PER ACRE

~ For Specified Values of o When 1,=-0.50 and p is Linear

CARRYOVER (BU.)-C
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Figure 3.—As would be expected, the greater the variability in expected produc-
tion, the l‘arger i§ the optimal carryover. A cgmparisgn of th: relative distance
between 63 and 6, in section A and between 8 and 8y in section B indicates
that the expected variabilit! in production has a greater effect on the optimal
rule when storage costs and interest rates are relativaly low, as in section B,
than when they are relatively high, as in section A.
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FEED GRAINS: OPTIMAL CARRYOVER
RULES PER ACRE

When p is Linear or Curvilinear and y'« 0.10c¢+ 0.95, 704 -0.50,
and o = 3 Bushels per Acre
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Figure 4—When the marginal value function is of constant zlasticity, the optimal
carryover for small supply is higher and for large supply is lower than under
similar conditions when the function is linear. In each case, however, the
storage rule is curvilinear.

of all feed grains, minimum working stocks in this study were taken to
be about 200 million bushels, or about 1.4 bushels per acre.

This value may be 50 to 100 million bushels lower than 8 minimum
that would provide a reserve until quality grain is available from the
next crop. The national aggregate equilibrium level including working
stocks for each storage rulge also is given in table 1. This is obtained
by multiplying the per acre value for C* by 140 million acres and add-
ing to the result 200 million bushels. To convey some idea of the pos-
sible range or variability of carryovers under each rule, a value C**
is given for all rules except 6, and 6;;, where C** i the level of carryover
that would be reached under the rule at the end of two ‘“bumper-crop”’
years, that is, two successive years each with a yield of 35 bushels per
acre, starting with an initial carryover of C*. C** also is given on a
national aggregate basis including working stocks. The rules them-
selves are presented in terms of bushels f)er acre, rather than as a
national aggregate, to make them directly applicable to situations
where acreage planted differs.

All computations were carried out to the closest 0.01 bushel per acre.
Some slight inaccuracy may be introduced in making the inversions
by linear interpolation. The final results should be accurate to within
0.02 or 0.03 bushel per acre, and are almost certainly accurate to within
0.05 bushel per acre. These limits do not, of course, allow for errors
in the estimates of the given conditions v/, «, p, and F.

446979°—58——b6



TaBLE 1.—Corn, oats and barley, corn equivalent: Optimal carryover rules under specified conditions and related quantities 1

Rule—9
Item Unit -
1 2 3 4 5 6 7 8 9 10 11
Condition: '
Elasticity—mno- - - oo oo | .. —0. 50|—0. 50|—0. 50{—0. 50{—0. 30| —0. 30|—0. 40|—0. 50| —0. 50| —0. 50,—0. 50
Cost of storage—vy’ _ ________ Dol______ .100 .10 .04/ .04 .10, .04/ .10/ .10 .10} .04} .04
Discount rate—a_ - _________|__________ .95, .98 .95 .98 .95 .98 .95 .95 .95 .98 .98
Variability of yields—o______ Bu...__.. 3.03 3.03) 3.03 3.03 3.03 303 3.03 5.05 0| 5.05 0
Optimal carryover per acre when
supply per acre equals—
28 oo ——-do_____ 0 0 0 0 0 0 0 0 0 0 0
29 . —--do.____ 0 0 0 0 0 07| 0 0 0 33 0
30 .. —--do_____ 0 0 of .33 o .77 0 0 0f 1.03 0
3 I ——-do_____ 0f .34 .46 .99 .55 1.50f .25 .28 0 1.75 .46/ .
S —--do____._ .55 .93 1.07] 1.69] 1.19] 2.25 .84 .90) .39 2.48 1.01} .
83 - —-_do_____ 1.13| 1.57] 1.74] 2.41] 1.86/ 3.02| 1.47| 1.53 .90 3.23 1.70( 1.
34 . —-_do_____ 1.74) 2.22| 2.42| 3.15| 2.57| 3.80| 2.12| 2.18| 1.44| 3.98 2.41| 2.
85 —--do____. 2.38 2.90 3.12| 3.90] 3.29| 4.60] 2.80 2.85 1.98 4.75 3.14| 2.
86 . __.do____._ 3.05| 3.61 3.85 4.67] 4.02| 5.40/ 3.50] 3.55 2.66] 5.53] 3.92| 3.
. G ——-do_____ 3.74| 4.32) 4.60| 5.45] 4.77] 6.20{ 4.22| 4.27| 3.34| 6.30] 4.64| 3.
B8 o __.do_____ 4.44| 5.05 5.35 6.24| 5.54/ 7.01| 4.95 4.98 4.04( 7.10/ 5.50 4.
39 . __.do_____ 5.16| 5.80] 6.12| 7.02| 6.31| 7.83 -5.70| 5.70, 4.73] 7.90{ 6.31 5.
40 . —__do._.__ 5.89/ 6.55 6.89 7.82| 7.09| 8.66| 6.46/ 6.43| 5.45 8 70 7.14] 5.
41 .. —--do_____ 6.63 7.3l 7.67| 8.63 7.88 9.50 7.22| 7.17| 6.18 9.50f 7.97| 6.
42 . _--do_____ 7.38) 8.07] 846/ 9.44| 8. 68 10.34| 7.99| 7.93 6.95 10.30( 8.80( 6.
43 . —--do_____ 8. 14| 8.84] 9.26| 10.27| 9.48| 11.21| 8.77 870 7.72] 11.12| 9.65 7.
44 . _-.do__._. 8.89| 9.62| 10.06| 11. 10| 10. 30| 12. 08| 9.56| 9.47| 8.50| 11.93| 10.50| 8.
45 e —--do.____ 9. 67| 10. 41| 10. 87| 11. 94| 11. 12| 12. 95 10. 36 10. 23| 9.27| 12. 75/ 11. 35 8.
46, ver-scrmzorrersrorrermaloa-G0. . --| 10,45 11,200 11,691 12, 79! 11, 94! 13,83 11, 16! 11, 02! 10. 06! 13. 58! 12. 221 9.
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47 e —--do_____ 11. 23] 12.00] 12. 52| 13. 64] 12. 78| 14. 72| 11. 98| 11. 78] 10. 84| 14. 40| 13. 09| 10. 28
48 o _.-do_____ 12. 02| 12. 81| 13. 35| 14. 50| 13. 62| 15. 61| 12. 80| 12. 58| 11. 65| 15. 25| 13. 96| 11. 00
49 e C _--do_____ 12. 82| 13. 63| 14. 19| 15. 35| 14.47| 16. 51| 13. 62| 13. 37| 12.46] 16. 08| 14. 83| 11. 69
50__.___ e eicccc———e- _.-do_..___ 13.63| 14. 45| 15.03| 16. 22| 15. 32| 17. 42| 14. 45 14. 17| 13. 29| 16. 93| 15. 70| -12. 38
Related quantity:
Per acre: : ) o ‘
k2 o eeaoaC —--do-____ 31. 04| 30. 42| 30. 25| 29. 49| 30. 11| 28. 90| 30. 58| 30. 54| 31. 24| 28. 53| 30. 17| 30. 32
C* el ——-do_____ .3 .5 . 6 1.4 .7 2.7 .4 .4 0 3.0 0 .4
C** o eooC -—-do___.__ 4.1 5.3 5.7 7.8 6.1] 10.1 5.0 5.0{-_--__ 10. 4| ____- 4.3
As a National aggregate: 3
C* o Mil bu___ 242 270 284 396 298 578 256 256 200 620 200 256
C** oo —--do_-___ 774 928 998| 1,292 1,054] 1, 614 900 900} ____. 1,656|.____- 802
Y
1 The marginal value function is agsumed to be linear for all rules except the last, 3 Obtained by multiplying the per acre value by 140 million acres, and adding 20
Kh&reboonstant elasticity is assumed. See text for exact definition of symbols shown million bushels, the assumed m: um working stocks.

ub. L
2 The value of 8 (supply per acre) below which the optimal carryover (exclusive of
minimum working stocks) is zero.
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FEED GRAINS OPTIMAL CARRYOVER
RULES PER ACRE

Under Alternative Conditions Specified in Table 1

CARRYOVER (BU.)-C

10 /

28 30 32 34 36 38 40 42
TOTAL SUPPLY (BU.)-S

.CORN, OATS AND BARLEY, CORN EQUIVALENT,

U.S. DEPARTMENT OF AGRICULTURE NEG. 4111-57(4) AGRICULTURAL MARKETING SERVICE

Figure 5.—Similarities, other than level, are greater than are differences even for
the wide variety of conditions that apply to the 11 rules for which computations
have been made, and for which the marginal value function is linear.

SOME GENERAL CONCLUSIONS WITH RESPECT TO
v STORAGE

From the equations whose solution gives the optimal storage rule
under conditions of stationarity (see page 46), we may derive the
following conclusions (see pages 48-55):

1. If the marginal value function is the same as the market price function, the
amounts which would be stored under an optimal governmental storage program

are exactly the same as the amounts that would be stored in the aggregate by
private firms in a socalled ‘“‘idealized’’ free market. Such a market is one having
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perfeet eompetition, in the economic sense, and in which private firms seek to
maximize their expected discounted profit.!s

2. If the marginal cost of storage is a constant, so that the cost of storing each
additional bushel of grain is the same regardless of whether large or small quan-
tities are stored, and other conditions are the same as in (1) above, then the ex-
E;cted cost to the Government of operating an optimal storage program is zero.

nder these circumstances, profits from the storage operations are just large
enou%h to offset the costs of storage.

3. If the marginal value function is linear, the computations are somewhat
simpler. However, as indicated by figure 4, the resulting storage rule is not
linear, even in this case.

4. As illustrated in figure 3, the general shape (though not the position) of an
optimal storage rule computed under the assumption of no variability in future
yields is, at least in some cases, a fairly close approximation to the rule computed
with the actual distribution of yields under the same conditions of total value,
cost of storage, and interest rate.

Rules based on no variability in yields can be computed fairly easily (see pages
33 and 52). Moreover, it can be shown that the initial assumption in the iterative
process can be any arbitrary storage rule and the iterations still will converge to
the optimal rule. Furthermore, the closer the initial assumption is to the ulfimate
optimal rule, the fewer are the iterations required. These facts permit us to use
rules that have been computed under the assumption of zero variability in yields
for two purposes: (a) To reduce the number of iterations required for the process
that leads to the actual optimal rule with yield variability included in the solution
by providing reasonably accurate first approximations as a startin%point, and (b)
to provide rough but easily obtained measures of the effects on the optimal rule
of making changes in the estimates of the other conditions.

5. When the quantity to be stored is plotted on the vertical scale and the total
supply is plotted on the horizontal scale (as in figures 1 through 5), the optimal
quantity to be stored increases continually with increasing supply except that
“when supplies are smaller than some specified amount, the quantity to be stored
(in excess of minimum working stocks) is zero. The approximate point at which
the curve cuts the supply axis can be determined rather easily (see pages 36, 54).

6. Use of (4) and (5) above gives a convenient method for obtaining a first
approximation to the optimasl rule under a specified set of circumstances. The
following three steps are involved: (a) Compute the rule with zero variability
in yields; (b) compute the approximate point at which the curve cuts the supply
axis when yields vary in their normal way; and (c) shift the curve based on no
variability in yields horizontally to the left on the graph so that it cuts the supply
axis at the indicated point. This gives an approximation to the rule when yields
va.l;y in their normal way. Use of this approach is described in detail in thé next
section.

A METHOD FOR OBTAINING APPROXIMATIONS TO THE
RULES

To illustrate the procedure, approximations to optimal rules under
two sets of conditions are obtained. The conditions are those used
for rules 6, and 6, as shown in table 1. As noted im the preceding
paragraph, the first step is to compute rules using the specified coridi-
tions but based on an assumed yield variability in future years of
zero. To avoid possible confusion with the accurately-calculated
rules given in table 1, we refer to these rules as A and B, respectively
and label the corresponding rules obtained when yields are assumed
constant as A’ and B’, respectively.

To facilitate the computations, we show in table 2 the eonditions
that relate to these rules. Items in the first three rows are the same
as the comparable items in table 1; those in the next two rows were
obtained by the method discussed on page 24 (see equations (9) and

15 For a more precise statement of the conditions under which this conclusion
is valid, see pages 48—49.
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(11)). Thelast item is obtained by making use of the constant term
and the slope coeflicient for the marginal value function in con-
nection with utilization of 29.46 bushels per acre, the assumed average
“yield. For rule A, this computation is made in the following way:
$4.50—(0.10X29.46)=$1.554

TaBLE 2.—Conditions used in obtaining optimal rules A and B

Rules
Item
A B

Marginal cost of storage, v/, dollars perbushel__________ 0. 10 0. 04
Discount factor, , 1/(1-+interest rate) . _______________ .95 .98
Elasticity when utilization is 30 bushels per acre, 9o----- —. 50 —. 30
Marginal value function: p(Y)=a—bY

Constant term, a_ _ - ______ 4. 50 6. 50

Slope coefficient, —b_ __ o _______________ —. 10 —. 167
Marginal value when utilization equals 29.46 bushels,

po, dollars. _ . 1. 554 1. 590

Estimating rules when yields are assumed constant.—The computa-
tions for rules A’ and B’, respectively, are shown in table 3. Num-
bered items in the remainder of this paragraph relate to the columns
of that table. (1) The number of the row. The symbol i is used to
indicate the row in subsequent columns. Note that i=0 for the first
row. (2) The discount factor raised to the (i+1) power. (3) The
sum from j=0 to j=1i of the discount factorraised to the j*® power. Any
number raised to the 0™ power equals 1. Hence, for 1 equal zero,
the number in this column is 1. The item in the second row equals
‘14(0.95)!=1.95. The item in the third row equals 14-(0.95)'+}
(0.95)?=2.852, The series can be conveniently obtained by insert-
ing a 1 in the first row and adding the item from thei—1 row of the
second column to the cumulative total to obtain the item in the i**
row of the third column. (4) Column (2) times the marginal value
when utilization equals 29.46 bushels per acre. (5) The marginal
storage cost times column (3). (6) Column (4) minus column (5).
(7) The reciprocal of the absolute value of the slope coefficient for
marginal vaﬁle (1/b) times column (6). (8) The constant in the
equation for marginal value divided by the absolute value of the
slope coefficient (a/b) minus column (7). For rule A’, the quotient is
obtained as follows: 4.50/0.10=45.00. (9) Total supply equals
carryover plus column (8). Each entry in this column is obtained
(gler the corresgonding entry in column (10) has been computed.

olumn (10). Carryover equals supply in the preceding row (column
9) minus the assumed average yield of 29.46 bushels per acre.

In carrying out these computations, we first fill in all values in
column (1),n§l items in column (2), and so forth through column (8).
Items in column (2) can be obtained by successively multiplying the
item in the preceding row by the discount factor. We have already
described a convenient method for obtaining the items in column (3).
Items in columns (4), (5), and (7) are obtained by multiplying the
items in a previously computed column by a constant. Items in
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columns (6) and (8) are obtained by subtraction. The item in the
first row of column (10) always is zero. Given this value, we can
obtain a value for the item in the first row of column (9). From this,
we obtain the item in the second row of column (10). This permits
us to obtain a value for the item in the second row of column (9). B
repeating this process, all items in columns (10) and (9) are obtained.
The amount of clerical work involved is not great. Successive itera-
tions are continued until a sufficient range in observations for supplies
and carryovers are obtained. Thus, 5 points are computed in table 3
for rule A’ and 10 for rule B’.'

TaBLE 3.—Corn, oats, and barley: Computations involved in obtaining rules A’

and B’ 1
Rule A’/
|| @ 3 @ ()] (6) )] ® 9) (10)
Row | a0 | 1 @)X | @)X [@D—(5)| B)X |ab— |(B)+(10)| (9)i1-1—
@) Za o b Ib | (D 8 29.463
=0 c=6(s)
0..-.10.950 | 1.000 |1.477 |0.100 | 1.377 |13.77 |31.23 31. 23 0
.902 | 1.950 |1.402 | . 195 | 1. 207 |12.07 (32. 93 34.70 1.77
.857 | 2.852 11.832 | .285 | 1.047 {10. 47 {34. 53 39. 77 5. 24
.814 | 3.709 {1.264 | . 371 . 893 | 8.93 {36.07 46. 38 10. 31
.773 | 4. 523 |1. 201 | . 452 .749 | 7.49 |37.51 54. 43 ) 16. 92
Rule B’
'0__.__ .980 | 1.000 [1.559 | . 040 | 1.519 | 9.11 (29. 89 29. 89 0
1__..].961 | 1.980 (1.526 | .079 | 1.447 | 8. 68 |30. 32 30. 75 43
2 ___| .941 | 2.941 |1.494 | . 118 | 1.376 | 8. 25 |30. 75 32. 04 1. 29
3.__.].922| 3.882 |1.465 | .155 | 1.310 | 7. 86 |31. 14 33.72 2. 58
4____| .904 | 4.804 |1.437 | . 192 | 1.245 | 7.47 |31. 53 35.79 4.26
5____| .886 | 5. 708 |1.408 | .228 | 1.180 | 7. 08 |31. 92 38. 25 6. 33
6____| .868 | 6.594 [1.379 | .264 | 1.115 | 6. 68 |32. 32 41. 11 8.79
7____.| .851 | 7.462 |1.852 | .298 | 1.054 | 6.33 |32. 67 44, 32 11. 65
8____|.834 | 8313 |1. 325 | . 333 . 992 [ 5.95 |33. 05 47. 91 14. 86
9____| .817 | 9.147 (1.298 | . 366 . 932 | 5.59 (33.41 51. 86 18. 45

1 See text for computations involved in each column.
2 Based on values in the preceding row. A zero always is used in this column
for row 0.

Results from these computations are shown in figure 6, along with
those indicated when yields are assumed to vary in a normal way,
based on data for 6 and 6 from table 1. A’ is roughly parallel to A,
and B’ to B, indicating that a drastic change in one’s assumption
about the variability of yields does not change the slope of the optimal
storage rule very much, although the position of the curve does change.
The reader also should note that the difference between A and A’ or
between B and B’ is much less than the difference between either
A and B or between A’ and B’, confirming the view that assumptions

16 For the mathematics underlying these computations, see pages 52-54 and
Appendix note 9.
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FEED GRAINS® OPTIMAL
CARRYOVER RULES

Based on 140 Million Planted Acres
CARRYOVER (MIL. TONS)-C

30

20

10

() /"{ ":/
100 110 120 130 140 150 160
TOTAL SUPPLY (MIL. TONS) -S

¥CORN, OATS AND BARLEY, CORN EQUIVALENT.
U.S. DEPARTMENT OF AGRICULTURE NEG. 4112-57 (4) AGRICULTURAL MARKETING SERVICE

Figure 6.—An approximate method for obtaining optimal storage rules which
requires only simple arithmetic operations gives results that are nearly iden-
tical to those obtained by the complete mathematical technique. The true
rules are labeled A and B and the corresponding approximate rules, A’/ and B’’,
A’ and B’ were obtainzd as an intermediate step.

about the variability in yields have less effect on the optimal rules
than do changes in assumptions about other conditions.

Estimating the supply below which no grain should be stored when
yields vary.—This section describes a relatively simple method that
can be used to approximate the supply below which no grain (in excess
of minimum working stocks) should be stored when yields vary in
their normal way. %‘his point is referred to here by the symbol k.
To obtain this approximation to k, it is first necessary to calculate a
function L and a constant M. L is a function of k itself, the form of
the function depending on the probability distribution of outputs.
M is a constant, calculated from the marginal value function, average
output, the marginal cost of storage, and the discount factor.

We first obtain a table showing the values of L that are associated
with specified values of k. The values of k are taken at the lower
class limits of the intervals for yield per planted acre shown in the
tabulation on page 22. Values of L are obtained by making use of
the data shown in the tabulation. They can best be obtained by
starting with the largest value of k and working backward. The
computations are shown in table 4. Numbered items in the remainder
of this paragraph relate to the columns in that table. (1) Lower
limit of the class intervals for yields shown in the tabulation on
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page 2 starting with the last or largest yield. This is the value
of k. (2) Cumulative frequency of the yields, starting with the
largest yield (see page 22). (3) Column (1) times column (2).
(4) Midpoint of the class interval for yields (see page 22). (5) Fre-
quency for that yield (see page 22). (6) Cumulative product of the
items 1n column (4) times those in column (5). (7) Column (6) minus
column (3). This is the value of L. The reader will note that
computations for some values of k are omitted. Computations
involved for these rows are clear from those shown in the table.

TaBLE 4.—Corn, oats, and barley: Computations involved in obtaining L for specified

values of k1
¢)) (2) 3) 4 (5) (6) )
% st | )X @] = f® EF@xe| T
6)—@3)

345 ___ 0. 02 0. 69 35| 0.02 0. 70 0. 01
335" 102 67 34| .00 70 .03
3905 01T 12 3. 90 33| 10 400 T10
315 J22 6. 93 32| 10 7. 20 T27
30501 .36 10. 98 31 14 11 54 56
205 - 717 56|  16.52 30| .20 17. 54 102
195 .98 19. 11 20| .02 29. 08 9. 97
185. . 0" 1,00 18. 50 19| 02| 2946 10. 96

1 See text for computations involved in each column.

The next step is to obtain a value for M. This is done by use of
the following formula. The constant term and the regression coeffi-
cient referred to are for the marginal value function shown in table
2. The absolute (or positive) value of the regression coefficient is
used. The discount factor and the marginal cost of storage are given
in table 2, and the average production is the mean of the distribution
of yields shown on page 22.

M= (Discount factor) (average production)

_, (1—discount factor) (constant term) , (marginal cost of storage)

' |regression coefficient| T |regression coefficient|
(12)

For rule A, use of this formula gives the following:

(1.00—0.95) (4.50)

(0.10)
0.10) + —=31.24

M=(0.95)(29.46)+ (0.10)

For rule B, M=29.88.

By making use of M, the discount factor, and an estimate of the
slope of the optimal rule we now obtain a second set of values that

shows a relationship between k and L. The value of k that we desire
446979°—58——8
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is the value of k that satisfies each of these relations. The second
relation between k and L is obtained from the formula:

k=M — (discount factor)(slope)L (13)

In the computations shown in the next two paragraphs, we use an
approximate value of 0.6 for the slope of the storage rule.

For rule A, formula (13) gives the following:

k=31.24—(0.95)(0.6)LL
=31.24—0.57L

By comparing this formula with the values of k and L shown ir
table 4, we see that the value of k that will satisfy both equations lies
between 31.5 and 30.5 bushels. For these values of k, Li in table 4
has a value of 0.27 and 0.56, respectively. We use these values of
L in the formula shown above an({) solve for k. Results obtained are
31.09 and 30.92 bushels, respectively. We now make a greatly en-
larged graph with k on the vertical scale and L on the horizontal
scale. Values for k of 31.5 and 31.09 are plotted opposite a value
for L of 0.27; values for k of 30.5 and 30.92 are plotted opposite a
value for L of 0.56. The points for which k equals 31.5 and 30.5
are connected with a line, as are the points for which k equals 31.09
and 30.92. The value for k at the intersection of the two lines is the
desired k. For rule A, this is 31.01 bushels and for rule B, 29.14
bushels.

A modification can be made in estimating k, namely that of using
for the slope of the optimal rule the slope obtained under similar con-
ditions when yields are assumed to be constant. As the function is a
curve, a decision has to be reached as to the point on the curve for
which the slope is to be computed. Two points appear relevant:

(1) The point closest to 12, and (2) the point closest to the average
supply. The average supply can be obtained by adding to the con-
stant production the average carryover. For rule A this is 29.46+

0.3=29.76. As this point is below 12, we can compute the slope for
only one segment of the curve, namely that shown by the first 2 rows
of table 3. The average slope for this segment equals (1.77—0)/
(34.70—31.23)=0.51. When this slope is used in formula (13), a

value for & of 31.05 bushels is given, almost the same as the true value
of 31.04 (see table 1).
For rule B, the average supply equals 29.46+42.7=32.16. This is

somewhat above k. Hence, two sets of computations were made, one
for which the slope was estimated over the segment of the curve
shown in the first 2 rows of the second section of table 3 and the other
over the second, third, and fourth rows, as the average supply is just
about at the midpoint of this segment. The average slope in the first
case was 0.50, and in the second case, 0.67. When these values were
used in the formula, estimates for k of 29.33 and 28.86 bushels, re-
spectively, were given, compared with the true value of 28.90.

_Results of estimating & when the estimates are based on the several
different ways of estimating the slope of the optimum rule are tabu-
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lated in table 5. The results obtained suggest that an efficient way
to obtain this value is to use as an estimate for the slope the slope for
the rule when yields are assumed not to vary measured at a point
close to the average supply. By using this approach and the general
method for obtaining the rule when yields are assumed not to vary
described beginning on page 34, a close approximation to the rule
can be obtained. Mathematical techniques required to develop these
computational methods and to show just what the various steps
mean are described on pages 54-55 and in Appendix Note 10.

TaBLE 5.—Corn, oats, and bar{;y: Estimates of k by specified methods, actual and
er

as a difference from the true value
Estimate of &
Method of estimating slope of Actual value for | Difference from
optimal rule rule— true value for
rule—
A B A B

Bushels | Bushels | Bushels | Bushels
Arbitrary valueof 0.6__________________ 31. 01 29.14 | —0.03 0. 24
Same slope as for rule when yields are
assumed not to vary measured at the
point closest to—
b . 31.05 | 29.33 .01 .43
Average Supply. .- - oo 31.05 | 28.86 .01 —. 04

Final results when yields vary.—The actual rules obtained by the
several methods are shown in figure 6. The notation is the same as
that given in the text, but it may be helpful to the reader to review
briefly the methods used in obtaining them. Rules labeled A and B
were obtained by use of the full mathematical procedure based on the
yield distribution shown in the tabulation on page 22 and the other
variables shown in table 2. Data that relate to these rules in terms

of bushels per acre are shown in table 1 under rules 6, and 6s, respec-
tively. For the chart, these were converted to million tons, assuming
that 140 million acres need to be planted to the 3 feed grains to meet
utilization requirements when yiefds are at their average level. The
supply range shown on the chart goes to & maximum somewhat above
the maximum supply of the four feed grains on record when research
on this study was completed.”

Rules A’ and B’ are based on assumptions similar to those used for
rules A and B, respectively, except that yields in future years are
assumed to be constant at their average level. Computations in-
volved in obtaining these rules, in terms of bushels per planted acre,
are shown in table 3. Rules A’ and B’’ were obtained %y using the

17 Namely, a supply of 153 million tons and a carryover of 31 million tons for
the marketing year beginning October 1950. New records were set for the years
beginning in 1954, 1955, and 1956. In the last named year, supply was 174
million tons and the carryover, 43 million tons.



40 TECHNICAL BULLETIN 1178, U. 8. DEPT. OF AGRICULTURE

values computed for rules A’ and B’, respectively, adjusted in such
a way that the curves pass through the point on the supply axis

equal to the value of & shown in the last row of table 5. Methods
by which the values in table 5 were obtained are discussed on pages
36-39. As for the other rules, conversions from bushels per acre to
million tons also were made.

It is evident that, particularly for the assumptions used in connec-
tion with rule B, the approximations obtained by the last approach
are nearly identical with the rules obtained by applying the complete
mathematical technique.

MATHEMATICAL SOLUTIONS

Some of the symbols used in the mathematical solution have been
introduced in earlier sections. As they were not necessarily defined in
strict mathematical terms, it now appears desirable to repeat the defini-
tions, making use of additional rigor where required.

As indicated on page 11, the conditions which are relevant and
which must be estimated prior to the derivation of storage rules are
the following: (1) The discount factor o (equal to 1/(1+4r), where r is
the interest rate), (2) the cost of storage, (3) the conditions of utiliza-
tion (demand), and (4) the conditions of production (supply) of the
grain. The latter three sets of conditions are conveniently handled by
setting up the following functions:

7:(C): the cost (in dollars) of carrying over the quantity C in the
year t;

- 8,(Y): the total value to the general public (measured in dollars)

attributable to the utilization of the quantity Y in year t;

an
F.(x): the probability distribution of output x in year t.

As an alternative to the use of the total value function §, we may,
if § is differentiable, use the marginal value function p,(Y), defined as
the derivative of §,(Y). For many purposes, use of the marginal value
function p turns out to be more convenient and more illuminating
than use of the total value function 6. However, our initial presenta-
tion of the solution is in terms of the é function, since the exposition
and proofs are more straightforward in those terms.

Problems relating to the determination and estimation of these
functional relations%jps were discussed in earlier sections. To specify
the criterion of optimality, first, ‘“the gain’’ incurred in year t, Wy,
is defined as the total value of the grain utilized minus the cost of

storage,.that is:
Wi=8,(Y:)—7:(Cy) (14)
=08:(St—C) —7:(Cy) (15)
since the quantity utilized, Y,, equals the total supply, S;, minus the
amount carried over, C,.
As indicated on page 9, a “rule of storage’ is a function (6,) which
explicitly states the dependence of C; on C,_; and X,, that is:

Ci=0,(Cus, Xo) @
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A “storage policy” for a period of n years (t=1,. . ., n, where the
current year)is designated as 1) is defined as a set of storage rules
B, . . -, 00). o
( If we consistently follow a set of storage rules, the total gain in any
year depends on the initial supply and our storage rule. In thinking
about a year in the future, say year t, X, is unknown, so we make use
of its probability distribution F(x;). By usqu}L%1 these probability dis-
tributions we can, for a given set of storage rules, obtain an expected
value for W,, namely EW,. That is, given the probability distribu-
tions of output ¥y, . . ., Fy,if6,. . ., 6, are known, we could con-
ceptually, if not practically, find EW, by a (t—I)-tuple integration
over Fy, . . ., F,. Now let Vy,, be the sum of expected gains in
years 1, . . ., n discounted back to the year 1. If the annual dis-
count factor is a constant a (0<{a< 1), then the discount factor appli-
cable in year 1 to values occurring in year t is "7,

so that

Via=W;4eEW,;+o’EW,+ . . . +o'EW, ~  (16)
Forgiven ¥y, . . ., Fy, Vl,nyisafunction of S, and 6, . . ., 6, since
EW,is a function of S; and 6,,. . ., 6.

We now define the optimal storage policy as that set of rules 4,
., 6, which maximizes V,;, for any S;. _
The solution based on the total value function.—First rewrite equation
(15), to simplify the notation, as:

W,=W.(S,, C) (15.1)

That is, the gain in any year is a function of total supply and carry-
over.

For every gossible value of S, in the nth year, find C, to maxi-
mige W.(S,, Co). This gives C, as a function of S,, and Athat function
is 6,, the optimal storage rule for the n* year.’® With 6, thus deter-
mined, the maximized gain in the n™ year is a function of S, alone

and may be designated \Afn,n(Sn).
Proceed back to the year n—1. From equation (1),

Sn=cn-1+Xn (1-1)

where X, (from the viewpoint of year n—1) is a random variable with
probability distribution Fy(x,). To get the expected value (in year

18 With the cost of storage function and the total value function both mono-
tonically increasing, C, always equals zero. This result is not necessary, how-
ever, to what follows. In particular, if it is decided that for some reason stocks
should be at some specified level, say C,, at the end of a specified n-year period,
this value of C, may simply be inserted into the solution, and the procedure out-
lined then leads to the maximum-gain or least-loss program for bringing stocks
to that level. For the case of stationarity, where the criterion is to maximize
the sum of discounted expected gains in all future years, the situation is different:
C, may be set at any arbitrary value (zero is usually as convenient as any), and
the solution, that is, the optimal stationary storage rule, is independent of, or
completely unaffected by, the value so set; in this case, the value of n is also
pnspﬁpiﬁeg: the computational iterations are simply continued until convergence
is achieved.
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n—1) of the gain in year n (as maximized by 6,), we integrate V.
(Co_1+x,) over the probability distribution F,(x,), leaving a function
of C,_; alone. That is,

EV 0(Cact %) =Qu-1(Cac) (17)

This expression represents the expected (maximized) gain in year n
as a function of carryover in year n—1. In year n—1, then, for every
possible value of S,_;, we find the value of C,_; to maximize the gain
in year n—1 plus the discounted expected gain in year n. That is, we
maximize

Vn—l, n(S -1y Cn—l)=W —1(S -1y Cn—l)+aQn—l(Cn—l) (18)

This gives C,_; as a function of S,_;, and that function is én_l, the
optimal storage rule for year n—1. With 8,_, thus determined, the
sum of maximized expected gains in years (n—1, n) (discounted to year

n—1) is a function of S,_; alone, and may be designated i’n-n, 2(Sa1).
Proceed back to year n—2. From equation (1),

Sp-1=Co2+Xas (1.2)

To get the expected value (in year n—2) of the sum of the gains in years
(n—1, n) (Eliscounted to year n—1, and maximized by 6,_;, 6,), we
integrate Vu_1, n(Ca—2+X,_1) over the probability distribution F,_,
(Xa-1), giving a function of C,_, alone, say Qu_»(C,_z). In year n—2,
then, for every possible value of S, ,, we find the value of C,_; to
maximize the gain in year n—2 plus the discounted expected sum of
gains in years (n—1, n). That is, we maximize

Vn—'hn (Sn—2nd—2) == W —2(Sn—2;Cn—2) + aQn—Z(Cn— 2) (18 1)

This gives C,_; as a function of S,_,, and that function is (9.,_2, the
optimal storage rule for year n—2. With 6,_, thus determined, the
sum of maximized expected gains in years (n—2, n—1, n) (discounted
‘to year n—2) is a function of S,_, alone, and may be designated V,_,,,

_2).
The general procedure now can be seen for determining the optimal

storage rule in year t, 6,(1<t<(n), once the optimal rules in suc-
ceeding years 8, . . . , 6, are determined. The sum of expected
gains in years (t+1, ..., n) (maximized by 6., . . i 8., and
discounted to year t-+1) is a known function of S;y4, 88y Vip1,n(Sesa).
Since by equation (1)

St+l=Ct+Xt,+l (1.3)

where (from the viewpoint of year t) X,,; is & random variable with
the probability distribution Fy;,(x:41), the expected value (in year t)
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of V41,0 is obtained by integrating Vy1,n(Cs+Xey1) over that proba-
bility distribution, giving a function of C, alone, say Q.(C:). Then,
for every possible value of S, we find the value of C, which maximizes
the gain in year t plus the discounted expected sum of (discounted,
maximized) expected gains in years (t+1, ..., n). That is, we
maximize

Vt,n(styct)=Wt(St; Ct)+aQt(Ct) : (18-2)

"This gives C, as a function of S,, and that function is 8, the optimal
storage rule in year t. It also gives the maximized sum of expected
gains in years (t, . . . , n) (discounted to year t) as a function of S,,

A
say Ven(S0).
Continuing back to year 1 (the current year), we have thus deter-
mined the optimal storage rule for each grear 6;, . . ., 0, and also
the maximized sum of discounted expected gains in all the years, as a

A

function of S;, V;.(5;).*® The computational operations must be
carried out numerically, that is, by using discrete values of the various
functions corresponding to selected discrete values of their respective
arguments. The essential reason for this is the existence of dis-
continuities caused by the restriction of C (carryover) to non-negative
values. The author, at least, has been unable to find any analytical
“tricks,” even under the most simplifying assumptions about the
forms of the relevant functions, which make possible a non-numerical
<computational procedure.

e next consider modifications in the procedure when the conditions
are assumed to be stationary. By “stationarity” is meant the condi-
tion that the annual discount factor o and the three functions, cost
of storage v, social value §, and distribution of output F, are the same
in every year; by “independence’” is meant the condition that each
of the three functions is unaffected by any variable other than its
explicitly stated argument (C, Y or x respectively). The solution
outlined above assumes independence in the functions, but not
stationarity. If the independence condition does not hold, the general
form of the solution is the same as that outlined, but it becomes
4 bit more complicated, and the computational requirements may
become much greater. If stationarity is assumed, as well as inde-
pendence, and if the desired storage policy is that set of rules which
will maximize, in each year, the sum of discounted expected gains in
all future years, then the resulting optimal storage rules are identical

for all years. That is, a single (stationary) optimal rule § applies in
every year.

19 For a mere concise, more purely symbolic statement of the procedure, which
may help to clarify both its nature and the specific steps, see Appendix Note 5.
A characteristic of the method is that the computational operations are per-
formed on the successive gain functions themselves, the resulting storage rules
falling out more or less incidentally.

A
It should be noted that functions like Vi41,,(Ci+X%¢+1) are not, in general,
linear, so that, to get the expected value, it is necessary to integrate the whole
function over the distribution ofo, rather than simply to iniert the expected

walue of x. That is, in general, EV 41,0 (Ci+Xe41) isnot equal 10 Viprn(Cit Exets).
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Such a rule can be computed by the iterative procedure just out-
lined, by taking the number of iterations successively larger. The
procedure can be summarized as follows: Define an operator J
operating on any function ¢ by

J8(8) =Max [6(5-0) —v(C) +aEe¢(C+x)] (19)

where E means the mathematical expected value with respect to x,
that is, the integral over the probability distribution F(x). Then

Vin@®)=d"1508) (20)

where V,,n is the maximized sum of discounted expected gains in
years 1 through n, S is the initial year’s total supply (the subscript 1 is
omitted for convenience), and the superscript n~1 on J indicates that
the operation is performed n—1 successive times. As n increases,

Vl,.,(S) converges to a limit, that is,
Lim J® 4(S)=8(S) (21)

where g (S) is the maximized sum of discounted expected gams in
all future 2gre&rs This sum is a function of the initial year’s total
supply, S

Another way to look at the problem is to say that we want to
find the function B(S) which satisfies the equation

J BS)=B() (22)

The uniqueness of the solution, shown in the convergence proof,
depends on § being bounded (Wlthm the range of possible values of S)
and on the annual discount factor a being less than 1. Having

obtained B(S), the optimal stationary storage rule @ is obtained by
observmg, for each value of S, that value of C which maximizes

3(S-C)—7(C)+a E (C+x) (19.1)

The solutwn based on the marginal value function.—Although the
method suggested on page 13 for determining the total value function
implies that it is differentiable, the method of solution outlined
above does not require either differentiability or continuity in
this function. However, if the total value function §(Y) ¢s differen-

N” A5detailed discussion, and the proof of convergence, is given in Appendix
ote

In computations for practical applications, the iterations are not, of course,
continued to infinity, but only to the point where convergence is achieved. That
is, to the point where J» §(S)=J»"1 §(S), for all relevant values of S. Once
such convergence is obtained, further iterations in no way change the results.
The number of iterations required depends on the conditions of the particular
application, and also on the accuracy of the basic data or the number of significant
digits carried in the computations. The larger the number of significant digits
carried, the larger the number of iterations required to produce complete
convergence.
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tiable, then optimal storage rules b, . . ., 0, or, under stationarity,

the optimal storage rule 6, can be obtamed using the marginal value
functlon p(Y), defined as the derivative of total social value, that is,

(Y)_M @)

Each of the successive steps in the solution can be shown to be mathe-
matically equivalent to the corresponding step in the procedure using
the total value function 4(Y).

As before, we start with the last year of the n—year period. The
following steps are involved:

1. For year n, set the carryover equal to C,. If the policy criterion is to
maximize the sum of discounted expected gains over the n-year period, then
C,=0. If the criterion is to have a specified level of stocks on hand at the end
of the period, and to maximize the sum of discounted expected gains during thz
period subject to that restraint, then set C, equal to that specified level.

2. For year n-1, find for each possible value of S the value of C>0 which:
satisfies

@ E po(C+x2— Co) —7'5-1(C) — pu1(8-C) =0 (24)

where E is the mathematical expectation with respect to x, (the integral over
the probability distribution F,(x) ), « is the annual discount factor, p, is the
marginal value function in year n, v/,—;(C) is the marginal cost of storage in
year n—-1 (the derivative of v,—1(C) ), and p,—; is the marginal value function in
year n—1. This gives C as a function of S, and that function is the optimal storage
rule in year n-1, 6,—,(S). For those values of S where no value of C>0 satisfies
the above condition, *,—;(S)=0.

3. ﬁFor year n-2, find for each possible value of S the value of C>0 which
satisfies

@ B pot [C+Eam1— Ba-1 (C+Xam1)]—7'a-2(C) — p2(8-C) =0 (24.1)

where E is the mathematical expectation with respect to the random variable

X1, Oa—1 i8 the optimal storage rule for year n-1 (determined in the preceding
step), and the other symbols are similar to those used in equation (24). This
gives C as a function of S, and that function is the optimal storage rule in year

-2, 8,-3(S). For values of S where no value of C>0 satisfies the condition,

faa(S) =0. ,
4, In general, for year t (t=n-1, n-2, . . ., 1), once the optimal storage

rule for year t-4-1, 8,1, is determined, find for each possible value of S the
value of C>0 which satisfies

a B pey1 [CHXp1— ac+|(C‘|'Xt+1)]—‘)"c(c) —p(8-C)=0 (24-2)

where E is the mathematical expectation with respect to the random variable
X¢+1, and the other symbols are similar to those defined in przceding steps. This
glves C as a function of S, and that function is the optimal storage rule for year

t, 9.(S). For values of S where no value of &>0 satisfies the condition, 8:(8) = O
The optlmal storage rule for each year of the n-year period, 6;,

. ., Oy, is thus determined.?
21 Proof of the mathematical equivalence of this procedure to that using the
total value function is given in Appendix Note 6.
It should be noted that functions like
pfC+x—0,(C+xy)]

are not, in general, linear in x., even if p, is linear; so that, to get the expected
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In almost any conceivable practical application (certainly in all
those we have considered), the inverse of the storage rule function
6(S), that is, 671(C), is unique for C>O. That is, the function 6(S)
is monotonically increasing for all values of S such that 6(S)>0. This
means that each step in the procedure can be considerably simplified
if, instead of finding for each possible value of S the value of C>0O
which satisfies the stated condition, we find for each possible value of
C>O0 the value of S which satisfies the condition. The result is to
obtain S as a function of C, and that function is the inverse of the
optimal storage rule for the given year, say 6,71(C). To obtain the
optimal storage rule 8,(S), we simply invert 8,71(C).

For the case of stationarity, the procedure is essentially the same,
but the iterations are continued until the resulting 6 converges.
That is, if 6(S) is the optimal stationary storage rule, then successive
approximations 6,(S), 6:(S), . . ., 6u(S), such that Lim 0(S)=0(S),

m—e
are obtained by letting 6,(S)=0 (or any positive constant or any
monotonically increasing function) and (for m=1, 2, . . .) finding
0,(S) to satisfy the condition

aEp[0 (8) +xX— 10 (S) +%)]—7 [0 (S)] —p[S— 0 (S)]=0  (25)

for all values of S. Alternatively, and more simply, if 67*(C) is
unique for C> O, the condition to be satisfied can be written

aEp[C+x—b1(C+x)]—7"(C)— ol (C)—C]=0 (26)

for all values of C>O.

The optimal stationary rule #(S) is, then, the function 6 which
satisfies the following equation for all values of S:

aBp[6(S) +x—0(6(S)+x)]—7'[6(S)]—p[S—0(S)]=0  (25.1)

Alternatively, if the optimal stationary rule 6(S) has a unique inverse,

§1(C), for C>0, then §(S) is the function 8 which satisfies the follow-
ing equation for all values of C>O.

aBEp[C+x—0(C+x)]—7"(C)—p[67(C)—C]=0 (26.1)

For some purposes, it is convenient to rewrite the latter equation as:

o~1<0>=0+p-1{a | °°p[0+x—e<c+x>1dF(x)—7'«3)} (26.2)

where p~! is the inverse function of p, and the expectation operator is
written out explicitly as the integral over the distribution F(x).

value, it is necessary to integrate the whole function over the distribution of x,
rather than simply to insert the expected value of x;. That is, in general,

Ep[C+x:—06,(C+xy)]

i8 not equal to
alC+Ex,—06.(C+Exy)].
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It may clarify matters to repeat, in slightly different form, the
iterative procedure for finding the solution to equation (26.1), that
is, the optimal stationary storage rule 6(S), given the annual discount
factor « and the (stationary) functions marginal value p, marginal
cost of storage v/, and probability distribution of output F(x). The
following steps are involved:

1. Take 6,(S)=0, or, alternatively, an arbitrary function 8,(S) as the starting
point.
2. Find 6;1(C) by

070 = O+ p-tfa [ "I+ x—(C+ 0P ) — (O} 26.3)

Invert 6;1(C) to get 6:(S).

3. In general, for m=1, 2, . . ., having found 6,—(S), find 6;}(C) by
051(C)= C+p“{aj(;mp[c+X—Om-l(C-l'X)]dF (x) —7'(0)} (26.4)

Invert 671(C) to get 6. (S).

4. Then the optimal stationary storage rule is given by
Lim 6,,(S)=4(S) 27

m—>e .

In computations for practical applications, the iterations are not,
of course, continued to infinity, but only to the point where con-
vergence 18 achieved; that is, to the point where 0,(S)=60,_,(S), for
all relevant values of S. Once such convergence is obtained, further
iterations in no way change the results.

Computational considerations.—The solution using the marginal
value function is, of course, less general than that using the total
value function, since the total value function must be differentiable
so that the marginal value function exists. Furthermore, generaliza-
tion of the solutions to include the possibility of nenindependence
is usually easier if the total value function is used. However, for
the case of independence, which has been assumed in all of the
discussion so far, the solution and the computations using the marginal
value function have several advantages over those using the total
value function. One advantage is that, when using the marginal
value function, the cumulative sums of discounted expected gains

(that is, the \A o functions) need not be computed at each step. Thus,
computing labor is saved in each iteration, and further, the number
of required iterations is less (in the case of stationarity), since the
storage rule functions (the #’s) tend to converge more rapidly than

do the corresponding V,, functions. Additional characteristics of
the solution and computations using the marginal value function
are discussed in the remaining pages of this section.

The integrations over F(x) at each step, that is, the computations
of the expected values E, still are carried out numerically, but values
of the functions p, 6 and ™' can conveniently be found graphically.
For the kinds of applications discussed beginning on page 21, a given
number of iterations can be carried out in about one-fourth the
number of computing man-hours required when using the total value
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function, and with somewhat greater precision. This results because,
when using the marginal value function method, interpolations can
be made which cannot be used with the total value function method.
For the applications which have been made, the number of iterations
required to achieve convergence in 6, within the limits of accuracy
of the combined numerical-graphical procedure, varied from 7 to 15.

In cases where the number of required iterations is large, labor
can be saved by a trial-and-error method as follows: We first define
an operator = by

76(C)=aEp[C+x—6(C+x)]—p[67(C)—C] (28)

Then the optimal storage rule 6(S) is that function 9 which satisfies
the equation

70(C)=7"(C) (29)

Different 6’s are tried, and the corresponding m8(C) functions com-
puted, until a sufficiently close approximation to 4’ (C) is obtained.
After some practice, goog approximations frequently can be obtained
with relatively few trials. Once a fairly close approximation has been
obtained, the corresponding 6 can be labeled 6, and then the iterative
procedure applied until complete convergence is attained, if desired.

Since numerical convergence, within the limits of computational
accuracy, is not equivalent to mathematical convergence, it is desir-
able to be able to show the e}gistence of an “upper bound” to the
optimal stationary storage rule 6, that is, a function 65 (say) such that

05(S) >6(S) for every S. This can be readily done, using the marginal
value function method. All that is required is to find a function 6,
such that m5(C)<+y’(C) for every C; it follows that 65(S) >6(S) for
every S.2

SPECIAL MATHEMATICAL RELATIONSHIPS OF INTEREST
TO THE ECONOMIC ANALYST

Relations between free-market and optimal governmental storage.—
From equation (26.1) on page 46, the following interesting equivalence
relation can be shown: The amounts which would be stored under
an optimal governmental storage program, that is, a program that
maximizes the sum of discounted expected net gains to the general
public, are exactly the same as the amounts which would be stored
in the aggregate {y private firms in a free market, if the following
conditions are satisfied:

22 This result is intuitively acceptable: uniformly lower storage costs imply
uniformly higher optimal storage rules. The truth of this proposition also
can be seen by setting 6 e(cllual to 6, in the iterative procedure, and observing the
relation between this 6 and the resulting 6,. Thus: :

aEp[C+x—00(C+x)]—x60(C) —pld5 (C) — C]=0
and
aEp[C+x—0(C+x)]—' (C) —ploy(C) —C1=0

Since v/ (C)<8(C), it follows that p[6; (C) —Cl<pl6y*(C)—C], that is, since
p is monotonically decreasing, 01_1 ©)>6 1(C), so that, 6;(S) <6(S).
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1. The market is perfectly competitive, and all storing is done by firms seeking
to maximize discounted expected profit;

2. The marginal value function p(Y) is the same as the market price function;

(31. The market discount factor is the same as the Government’s discount factor;
an

4, 4'(C) is the price at which the amount C of storage space can be rented,
that is, the ‘‘supply schedule” of storage space, minus the ‘‘marginal convenience
benefit”’ of the amount C of stocks on hand.

Under these conditions, if 6(S) is interpreted to mean the aggregate

amount stored by private firms, the first term in equation (26.1) is,
for any given year, the discounted expected price in the following year,
the third term is the price in the given year, and the middle term is
the per-unit marginal cost of storage. Only if 6(S)=4(S), that is,
only if the private firms’ aggregate storage activity is such as to
satisfy e%uation (26.1), is the market in equilibrium. If 8(S)<6(S)
for some S, expected marginal returns are greater than marginal costs,
and some firms tend to increase their amounts stored or to enter the
storing business; conversely if 8(S)>6(S) for some S.
" Relations between the conditions and the optimal storage rule.—Use of
equation (26.1) also shows more clearly and simply than can otherwise
be done the relationships between the conditions of the problem, that
is, the discount factor « and the functions marginal value p, marginal
cost of storage v/, and distribution of output F, and the solution to
the problem, the optimal stationary storage rule 8. It can be shown
fairly easily that certain kinds of changes in some of the conditions
are equivalent, in their effects on the resulting optimal storage rule, to
specified changes in other conditions. Equivalence relations of this
kind, which are useful both for substantive and computational
purposes, are illustrated in the following paragraphs.

For given a and F, a change in p(Y) by a constant factor r is equiv-
alent in its effects on 6 to a change in v’ (C) by the constant factor 1/r.
From another viewpoint, a general price inflation or deflation which
does not change the ratio of p(Y) to v/(C) for any Y or C, and also
does not change the interest rate or «, has no effect on the optimal
storage rule §. Similarly, a change in p(Y) by the addition of a
constant k is equivalent in its effects on 6 to adding the constant
(1—a)k to 4/(C). Also, for given « and F, if p*(Y)=rp(Y)+k and
¥ *(C)=(1/r)y’ (C)+ (1/r)(1 —a)k, then the same & which is optimal
under p*, o’ 18 optimal un(Aler p, ¥’ *; that is, a change of p to p* is
equivalent in its effects on 6 to a change in v’ to y'*.2

Using the results of the last paragraph, it follows that if

p*(Y)=r[o(Y)—Po]+Po=rp(Y)+ (1—r)Po (30)

then a change in p to p* is equivalent in its effects on 6 to a change in
7’ (C) to ¥ *(C), where

¥ *C)=(1/r)y (C)+ (1/r)1—a)(1—1)P, @31)

28 Proofs of these statements are given in Appendix Note 7.
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The flexibility of the marginal value function is defined by
e(Y)=—[dp(Y)/dY]-[Y/p(Y)] (32)

That is, flexibility is the absolute value of the elasticity of marginal
value with respect to quantity utilized. Let ¢ be the value of the
flexibility function at the point Y where p(Y)=P,. Then changing
p(Y) to p*(Y), as defined by equation (30), implies changing ¢ to
e*=re¢. Thus a change in the flexibility ¢ by a factor r, where the
change is accomplished by changing p as defined above, is equivalent

in its effects on 6§ to changing v’ to
7' *=(1/r)y"+(1/r)(1—a)(1—r1)P, (33)

For a numerical illustration of the last result, suppose &=2.00
and we wish to make ¢*=2.50 by making

p*(Y)=1.25[p(Y)—Po]+Po (30.1)

where Py=p(Ex), that is, the value of the marginal value function at
Y=the mean value of output x. Suppose also that Py=$1.50 per
bushel, v (C)=$0.10 per bushel (constant marginal cost of storage),
and «=0.95 (equivalent to an interest rate of about 5 percent per
annum). A simple computation shows that changing p to p*(and there-
by changing ¢=2.00 to &*=2.50) is equivalent in its effects on & to
changing the marginal cost of storage from ~’(C)=$0.10 per bushel
to v’ *(C)=8$0.065 per bushel.*

We next consider what can be said about the effects on the optimal
storage rule of changing the variance of the probability distribution
of output F(x). To be specific, let F(x) be changed to G(x) by the

relation
glr(x—p)]=1/r)f (x—p) 134)

where f is the probability density function of the distribution F,
transposed for convenience to take .the origin at u, the mean of x;
g is the probability density function of the distribution G; and r is a
constant factor greater than zero. G then has the same general form
and the same mean as F, but standard deviation cg=roy. The prob-
lem is, for given 7/, a and p, to find a relation between the storage
rule 6 which is optimal under G and one which is optimal under F.
The solution is to first find the rule §* which is optimal under F, 5/,
a, and p*, where p* is defined by

p*(Y—p)=p[r(Y—p)] (35)
For linear p, this is equivalent to making
p*(Y)=r[p(Y)—p(w)]+p(x) (36)
Then the optimal rule under v/, &, G and p is %
‘ Ba(S—u)=16*[(1/r) (S—p)] @7

24 If p(Y) has constant ﬂexibilitz, p*(Y) as defined here does not have constant
flexibility, but if p(Y) is linear, p*(Y) also is linear. ‘
2 See Appendix Note 8.
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Methods that allow for random fluctuations in demand.—An im-
portant feature of the method that uses the marginal value function
is that random fluctuations in the conditions of demand, as well as of
supply, can readily be incorporated into the solution. The simplest
case 18 one where the marginal value function p(Y) in each year
(including the current year) is subject to the same probability dis-
tribution. One then could define R(Y)=E,o(Y), where E,o(Y) is
the integral of p(Y) over the probability distribution of p. Then 6 is
obtained as before, substituting R everywhere for p. However, it
usually is more realistic to suppose that information about demand,
or about the marginal value function, in the current year is better or
more exact than the corresponding information for future years; that
is, to treat information about demand in the same way as information
about supply. If the current year’s marginal value function is known
and future years’ marginal value functions are subject to known
probability distributions, then an explicit solution would in general
involve an iterative procedure similar to those already outlined, except.
that each step requires integration over the probability distribution
of p as well as over F(x). \

By making a certain not unreasonable assumption about the way
in which the random fluctuations in marginal value occur, the solution
can be considerably simplified. The assumption is that the marginal
value function in year t is given by p,(Y,+u,), where Y, is quantity
utilized, the value of u, for the current year is known (designated Uy),
and u; in each future year t is a random variable subject to some
known or assumed probability distribution. If the function p is
thought of as plotted on a graph with Y on the horizontal axis, the
assumption is that the random fluctuations or shifts in the curve occur
horizontally. This is analogous to assuming, for a demand schedule,
thet at a given price the quantity demanded is a random variable
subject to a probability distribution, and that the probability dis-
tributions corresponding to different prices have different means
but are otherwise identical.

With randomly fluctuating marginal value functions of the kind
just described, the solution for the optimal storage rules 6 is obtained
as follows.?® The storage rule § becomes a function not of S alone, but
of S4U, that is, C=60(841U) P.nd 671(C)=S+4U. From equation
(26.1), the optimal storage rule 6 is the function 6 which satisfies the
equation

@ Ey up[C+x+u—60(C+x+1u)]—7"(C)—p[d7(C)—C]=0 (38)

where E, , means the integral over the probability distributions of x
and u. A new random variable z=x+4u can be defined, and its
distribution determined from the distributions of x and u. Then the

equation to be satisfied by 8 can be written
aEp[C+2—0(C+2)]—'(C)—p[67(C)—C]=0 (38.1)

2 For simplicity, the discussion is for the case of stationarity, so the time
subscripts are dropped; the modifications required for non-stationary should be
clear to the reader.
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6 is computed by the procedure outlined earlier, keeping in mind that
the resulting optimal storage rule is a function of S+ U rather than S
alone. Thus, if in the current year U=0, the only change in § for
the current year caused by the introduction of demand variability in
future years is that due to the greater variability of z over that of x.
If p[S—06(S)], plotted against S, is concave upward, as it will be in
most practical applications, the change in 6 caused by introducing
random variability in demand is upwards. That is, an optimal storage
policy under conditions of random fluctuations in future demand calls
for higher levels of storage than an optimal policy under conditions of
fixed future demand schedules, other things being equal.

Some computational aids.—We next present mathematical proofs
for the methods of obtaining approximate rules giveu in a preceding
section and certain other devices by which the task of computin
optimal storage rules under specified conditions, using the margina
value function, can be somewhat lightened. Some of the relation-
ships discussed also are of interest in themselves. Most of the dis-
cussion is, for simplicity, in terms of finding the optimal storage rule
for the case of stationarity and with no random fluctuations in
marginal value or demand, but some of the ideas also can be applied,
with suitable modification, to the cases of non-stationarity and random
fluctuations in demand.

If the marginal value function p(Y) is linear, say p(Y)=q—pY,
where q and p are constants, then equation (26.1) (see p. 46) reduces
to:

071(C)=7"(C)/p+ (1—a)q/p+ap+ (1+a)C—aEo(C+x) (39)

where u is Ex, the mean of the probability distribution of x. If the
marginal cost of storage 4’(C) is constant, designated ', equation
(39) can be written

6-1(C) =K.+ (1+0)C—a fk :o(o+x)f(x)dx (40)

where K, is a constant, v'/p+ (1—a)q/p+au; k is the value of S (to
be determined, along with the rest of the storage rule) such that for
S <k, 6(S)=0; f(x) 1s the probability density of x; and E6(C+x) is
written as the integral to emphasize that the integration is not taken
over the full range of F(x).

Equations (39) or (40) indicate that, even if the marginal value
function p(Y) and the marginalA cost of storage function v’'(C) are
linear, the optimal storage rule 6(S) cannot be linear, even over the
range S>k. The solution 6 is obtained by iteration as before, but the
computations become somewhat simpler, since no computation of
values of the function p (graphical or otherwise) are required. At each
step, having obtained values of the function 65 (C), values of 6,(S)
in most applications can be obtained numerically by linear interpola-
tion. Even though 6(S) is not linear, in most applications it is suffi-
ciently close to being linear so that linear interpolations over narrow
ranges give adequate accuracy.



CARRYOVER LEVELS FOR GRAINS 53

Equation (40) indicates that, for given « and F, any changes in
p and 7 which leave the constant K;=7'/p+(1—a)q/p unchanged
also leave the optimal storage rule 6 unchanged. For all p’s which pass
through the point (Po, Y,), q/p=Ps/p+ Y,, so that any changes in v’
and p which leave the constant K,=+"/p+ (1—a)Po/p unchanged also
leave @ unchanged. But a change in p by a factor r is equivalent to
changing ¢, (the flexibility at the point Py, Y,) by the sams factor r.
So equivalence relations between changes in ¢ and changes in '
can be obtained directly for the linear-p case, and they are, of course,
the same as those obtained on p. 49 for the more general case.

As pointed out on p. 33, in many applications which have been
carried out to date, the optimal storage rule 6(S), when computed for a.
given set of conditions and plotted on a graph with S on the horizontal
axis, is & curve zﬁ)groximately “parallel” to and (liy'ing to the left of, an
optimal storage rule, say §°(S), which is computed using the same set of
conditions except that output variability in future years is assumed to
be zero and output in each year is taken equal to the expected value
or Ex. That is, 6(S) ~6°(S+d), where d is some constant.

The computation required to obtain the optimal rule 6°(S) under
the assumption of zero variability in future outputs is a relatively
simple one. The optimal rule, C=6°(S), may be graphed in a series of
monotonically increasing connected line segments, as in figure 7.

ESTIMATION OF OPTIMAL STORAGE RULE
BY USE OF LINE SEGMENTS

CARRYOVER (BU.)-C

O .

0 So S, S, S,
TOTAL SUPPLY (BU.) -S

U. $. DEPARTMENT OF AGRICULTURE NEG, 4404-57 (8) AGRICULTURAL MARKETING SERVICE

Fraure 7.—Coordinates for the connecting points of the line segments in this
chart are obtained by formulas (41) to (44). The monotonically increasing
gegments suggest the general shape of the optimal storage rule under the con-
ditions specified.
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If p(Y) is linear, the segments of 6°(S) are also linear; if p(Y) is not
linear, the segments are not linear, but may be adequately approxi-
mated for most practical purposes by linear segments. Hence all that
is required to determine the rule 6°(S) is to determine the connectin,
points of the segments, which are designated in the chart as (S,, C,
(i=0,1,2, ... ). Thesubscriptsion S and C do not here represent

ears, of course, but simply the different points along the rule C=6°(S).
{et h be the harvest in each future year; if the rule is being calculated
for purposes of approximating the optimal rule with variable yields,
h=u=Ex. As before, p(Y) is the marginal value function, « is the
discount factor, and v’ is the marginal cost of storage (here assumed
constant).

We define a linear operator D operating on a variable Z by
DZ=0Z—~'. Then the optimal rule 6°(S), for the case of constant
harvest in future years, is determined by obtaining the segment con-
necting points (S;, C,) as follows, where M, is the value of the marginal
social value function at Y=h, that is, My=p(h): '

Se=p™ (DMy) an
S;=S,_;—h+p (DM, (i=1,2,....) (42)
Co=0 (43)
Ci=8;1—h (44)
=8;—p (D' M,) (44.1)
=Ci_i—h+,p' DM, (=1,2,....) (44.2)

where the superscript (—1) on p indicates the inverse of the function,
and the superscript (i4+1) on D indicates that the operation is to be
performed i+1 times. The three expressions for C, are equivalent;
all are given to indicate the inter-relationships involved and to give
the computer a choice. Sy is the S-axis intercept of 6°(S). The mean-
ing of the D operations may be clarified by noting that:

For i=1,
For is DM, =DM, =a(aMp—7")—7’ (45)
or 1=2,
I o DPM=DMy=dlaleMy—y)—v]—v (45.1)
n general,
i
D'HMh:a‘HMh“Y’j_ZOa’ (45.2)

Proofs of these results are given in Appendix note 9. A numerical
illustration was given on pp. 34-36.
We next consider the problem of determining an approximate value

of k, the S-axis intercept of the optimal storage rule 8(S) for the case
of uncertainty in future outputs, that is, when the harvest x in any
future year is a8 random variable subject to an estimated probability
distribution. The exact value of k is, of course, obtained from the
iterative computation procedure along with the rest of the storage
rule. The approximation considered here is for the purpose of ob-
taining an approximate rule, by the method given starting at the bot-
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tom of page 33. The approximate value, say k,, is obtained by solving
the following equation for k:

k=M—af,L(k) (13.1)

where the symbols are defined as follows:
M is a constant that equals

u—(1—a)p(w)/e’ (u)—"[p" (u) (12.1)

where p is the mean of the probability distribution of x, p(u) is the
value of p(Y) at Y=y, p’(u) 1s the value of the slope of p(Y) at Y=y,
and « and 4’ are the annual discount factor and the marginal cost of
storage respectively, as before.

6. 18 an advance estimate or approximation of the average slope of

the optimal storage rule §(S). This approximation can be obtained
from the slope of 6°(S) when the conditions other than yield vari-
ability are the same as those of the rule now being approximated
(see p. 38).

L(k) is the function defined by L(k)= f " (x—k)dF(x). The

k

values of this function for different values of k in most applications
must be computed numerically. Then the value of k which comes
close to satisfying the equation k=M —af,Li(k) can be obtained by
linear interpolation, giving the desired approximate value k,. The
function L(k) depends only on the probability distribution F(x), and
once obtained for a particular F can be used for different sets of
assumptions about the other conditions. Derivations of these results
are given in Appendix note 10. A numerical illustration was given
on pages 36—39.

Expected returns to storage.—The ‘‘expected returns to storage’”
obtained by following an optimal storage policy for an n-year period
may be defined as the difference between the sum of discounted
expected gains when the optimal policy is followed and the sum of
discounted expected gains when the carryover in every year is zero.
If the storage rule is computed using the total value function, this
difference can be obtained directly from the results of such computa-
tions, because of the fact that the maximized sum of discounted ex-
pected gains is computed at each step. Thus, for the case of non-
stationarity, the expected returns to storage for the n-year period
may be written as a function of the initial year’s total supply as follows:

Ra(S) =V, .4(8)—8:(8)— ga“‘f:ﬁt (xe)dFe(x¢) (46)

A
where V; ,(S;) is the (maximized) sum of discounted expected gains
under the optimal storage policy and the other two terms are the sum
of discounted expected gains when the carryover in every year is zero.
For the case of stationarity, the corresponding expression for n
years, dropping the subscript 1 on S, is:

R.,(S)=J“*‘6(S)—6(S)—(éa°’l> fo " 5(x)dF (x) 0
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and for all future years is:
R.(8)=Lim Ru(®)=B)—i(S)—[o/1—a)] [ 3dF(x)  (47.1)

In each case the expected returns are a function of the initial year’s
total supply S. Calculation of such expected returns functions gives
one a measure of the economic importance of a storage policy. Ex-
pected gains and losses under alternative (non-optimal but non-zero)
storage rules also may be computed. These aid in determining the
economic costs of adopting such non-optimal policies instead of an
optimal policy.

Calculation of the expected returns to storage is not quite so
straightforward if the optimal storage rules have been computed
using the marginal value function. However, for the case of sta-
tionarity, the problem still can be solved fairly simply. The question
is, having found the optimal stationary storage rule 6 using the p-
function, instead of finding the maximized sum of discounted expected
gains B(S) directly using the é-function, is it now possible to find
B(S) from 6(S)? The answer is yes, as follows: We know from the
proof of ht;;he equivalence of the two methods of solution in Appendix
note 6 that

dB(S)/dS=p[S—b(S)] (48)

Therefore,

668)= [, sr—d@at+ K (49)

where the first term to the right of the equa.lifiy sign is a function of
S (call it A(S)) which can be determined from 6, and K is a constant.
’Il‘lhe value of K is found as follows: From equation (22), J8(S)=8(S),
that is,

[S—6(S)]—B(S)]+e :6[9(8)+X]dF (x)=8(S) (50)
Substituting B(S)=A(S)+X in this equation gives ‘
(1—a)K=38[S—6(S)]—7I8(S)]+« J; wk[9(8)+X]dF(X)—>\(S) (50.1)

It can be verified easily that the expression on the right of the equality
sign is a constant. Some results of calculating expected returns to
storage for specific storage rules are given in Appendix note 2.

The equilibrium level of storage—The ‘“‘equilibrium level” of carry-
over is defined in the following way. Under stationarity, if the same
storaﬁe rule 6(S) is applied every year, whether 6 is optimal or not,
and if 6 fulfills the following conditions: (1) 8(S)<CS for all S, (2) 6 is
continuous and 0<d6(S)/dS<1, and (3) 0(Xmax) >0, Where Xp,x is the
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greatest possible value of x, then the following statements can be
shown to be true (see Appendix note 11):

1. There exists a va{ue C*>0, such thatj; 0(C*+x)dF (x) =C*; that is, if the
carryover in year t, C,, equals C*, the expected carryover in year t+ 1, ECy; also
equals C*, ’

2. C* is unique.

3. For any C, not equal to C*, EC,4, is between C, and C*.

The value of C* can be found readily, for a given 6, by trial and error.
Tts chief uses are

1. To enable the economic analyst to make quick comparisons among
the effects on “average” carryover levels of different assumptions
about the conditions «, v, F and p (or 8) and the resulting storage
rules. Thus, instead of comparing two rules in entirety by use of a
%raph or a table of values, one can compare the two resulting equili-.

rium levels. This does not, of course, give a complete picture of the
effective differences in the two rules.

2. To enable the analyst to make rough comparisons between
“average’’ carryover levef; that result under optimal storage rules
satisfying the criteria specified in this handbook and carryover levels
recommended by other writers or to satisfy other criteria.

METHODS THAT ALLOW FOR CONTINGENCIES

Optimal carryover rules can be computed in various ways for a
period in which the nation faces the possibility of the future occur-
rence of war or other disaster with similar consequences if the proba-
bility of such an occurrence can be estimated and the effects of such
an occurrence on the relevant conditions (demand, storage cost, in-
terest rate, and output) also can be estimated.

For example, if (1) the probability of the nation’s being at war in
any future year is 8, so that the probability of peace is 1—8; (2) the
marginal value function under war conditions, pys, is related to
that for peace, p, by ps(Y+U)=p(Y) where U is a known coustant;
and: (3) the other conditions (v, «, and F) are unaffected by war, then
the method outlined on page 51 for the case involving this particular
kind of random variation in p can be used. .

A suggested approach.—It seems unrealistic to assume that the
probability that a state of war exists is independent from one year to
the next. An assumption that may conform better with experience
is to say that the probability of a war starting in any future year is 8.
We then can compute optimal carryover rules for the years of peace
(that is, for the period of defense preparation) if we know or can assume
the carryover rule for the first year of war (6, say).

0, could be assumed directly or, perhaps better, computed on the
basis of assumptions about the expected duration of the war and the
changes caused by the war in «, v, p and F. For example, if the war
is expected to continue indefinitely and to cause no changes in «, v’
and F but to cause demand to increase by the amount U for any
price, then from equation (26.1) the optimal 6, must satisfy

oEpg[C+x— 05 (C+x)]—7'(C) — pul65(C)—C]=0  (26.5)
where py(Y)=p(Y—1).
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Having found or assumed 68, we can find the optimal ‘storage rule
84 for the years of war-preparedness, that is, the rule which will
maximize the sum of discounted expected gains during those. years,
by finding that 6, which satisfies

aBEpy[C+x—0,(C+x)]+a(1—B)Ep[C+x—b4(C+x)]—
v (C)—plfa* (C)—C]=0 (51)

The first term is a determinable function of C, so the method of salv-
ing for , is essentially the same as that outlined in pp. 44-47 and
used in the applications to feed grains.

Once the optimal war-preparatory f; is determined, the corre-
sponding equilibrium level Ci (say) and the equilibrium level
C#* that results under the optimal rule with a probability of war
equal to zero can be found. Then, if one likes, the difference between
Cgq and C* can be considered as a ‘‘war reserve.” However, it should
be emphasized that this is not a separate stock. The primary effect
of introducing the war contingency is a change in the storage rule
itself; the change in equilibrium level of carryover is simply a con-
comitant effect.

An application.—Computations of explicit war-preparatory rules
for sets of conditions corresponding to those used for the rules given
in table 1 have not been carried out. However, an idea of the effect
of allowing for war contingencies on storage policy, under such con-
ditions, can be obtained as follows:

Assume that:

(1) The probability of a war starting in any future year is §=0.2;

(2) During the war, the quantity demanded at any given price is
4.5Y bush)els per acre greater than in peacetime, that is, p,(Y)=
p(Y—4.5);

(3) In peacetime p is the same as for 6, in table 1, that is, p(Y)=
4.50—0.10(Y), and in both peace and war, «, v’ and F are the same
as for 6;(a=0.95, v'=0.10, 0=3.03).

Then ps(Y)=p(Y)+0.45, so (utilizing the results on page 49) if the
war is assumed to go on forever, 6, under py, v” is equivalent to the ¢
that is optimal under p, ¥’*, where 4’*=0.1225. This implies that
0, is slightly lower than 6;, so we get a higher war-preparatory rule 6
than is actually optimal by taking 6,=6,. If the war is not assumed
to go on forever, 6, would be still lower.

From equation (51), under the conditions stipulated,

Epn[C+x—04(C+x)]=Ep[C+x—8(C+x)]+pU (52)
—a—pC—putp [, HC+IF@®+U  (52.1)
where k; is the value of S below which *,(S)=0, and U=4.5. Also,

EAlC-+x—du(C+0]=a—pC—putp [ h(C+xdF@  (3)
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80 equation (51) becomes

aBpU-~+ afp fk T_oél(C—l—x)dF(x)—aBp L :_Oéd(C—l-x)dF(x)-l-
aEp[C+x—08,(C+x)]—7/(C)—p[f" (C)—C]=0 (54)
Finally, following the form of equation (39) (page 52), we obtain

531(0) =v'/p+(1—a)q/p+ap—afU-+ (1+a)C—
a8 HO+RIF@—at—p) [ UCHNIFE (55)

Since 8,<0,, Wwe again get a fs which is higher than it should be by
substituting 6y for ;. This gives us

7O =7 o+ 1 —a)afp-+an—afU+ (1 +a)C—a [ ha(C+x)IF ()
(56)

Equation (56) is similar to equations (39) and (40) (page 52) for
6,, except that instead of K;=31.24 (K, is defined on page 52), we
have K,—afU=31.24—0.86=30.38. Comparing this value with
the values of K, corresponding to the conditions of 4, 6; and 65 of
30.89, 30.64, and 30.54, respectively (see table 1), we find that our
“conservative” f, is somewhat higher than 8, but not as high as bs.

If we take 6; as an approximate 9,,, ‘the ‘“‘war reserve’’ is 56 million
bushels [(0.7—0.3) X 140 million]. If 6, is used as a doubly conserva-
tive approximation to 64, the war reserve is 154 million bushels.

SOLUTIONS THAT ALLOW FOR LAG EFFECTS IN THE
CONDITIONS

On page 15, methods are discussed by which the effect of a change in
one Ke&r’s supply of grain on the following gear’s livestock inventory
can be allowed for, at least approximately, by an appropriate adjust-
ment in the marginal value function. However, certain other kinds
of lag effects may be more difficult to handle. If such effects can
be quantified, the total value function for a given year t can be written
as a function of both the quantity utilized in year t and the quantity
utilized in the preceding year, t—1, that is, §,=8,(Y,, Y,—1). The
optimal storage rule for a given year t then becomes a function of both
total supply S in that year and the quantity utilized in the preceding
{fear, 0.(Ss, Y1), or, in the case of stationarity, 6(S, Y_,), where

_1 18 the quantity utilized in the year preceding the application of
the rale. The solution may be written out explicitly for the case of
stationarity as follows:

A

Vas=Max (56—C, Y_)—7(O)]=Va.(S, Y-) (67)
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and 8 (S, Y_;)=the value of C that achieves the maximization.
Vaor, n—Max [666—C, Y_,)—v(C)+
EVon(C+x, S—O)=Va1a(S, Yor)  (57.1)

and 8,_,(S, Y_,)=the value of C that achieves the maximization.
We continue until V3 ,(S, Y_;) is obtained ; then

' ——M&X [88—C, Y-)—¥(C)+aEV;a(C+x, S—C)]=V1.a(S, Y-))
(67.2)

and 6,(S, Y_,;)=the value of C that achieves the maximization. For
the last step, Y_;=Y,, the quantity consumed in the year preceding
the initial year of the program.

The solution can be summarized more concisely by defining the
operator J as

J8(S, Y-)=Max [5E—C, Y-)—7(0)+aEs(C+x, S—O)] (58)
Then, - .

Via=d2718(S, Y_,) : - (57.3)

Computations required are, of course, considerably more voluminous

than in cases empIO{lng functions of one argument. The modifications

required in the outline to allow for non-stationarity should be clear.

Solutions that allow for lags in the other functions, that is, in the cost

of storage and the distributions of output, can 'be obtained in an
analogous way.?

OPTIMAL MULTIREGIONAL STORAGE RULES
MATHEMATICAL SOLUTIONS

Suppose we have m regions for which the followmg are known:

-

(1) Total value functions: §(Y,), . . ., n:.(Y )
(2) Cost of storage functions: v, (Cl +y Y m)
(3) Cost of transport functions: 1'u( ), L,j=1 .,

(4) Probability distribution of outputs: F(xl, .. xm)

The subscripts refer to regions, not years. The solution is written
only for the case of stationarity, so the year need not be indicated
explicitly. Thus, 8,(Y,) is the total value of quantity Y, consumed
in region i in a given year; v,(C)) is the storage cost of carrying over
the quantity C, in region i in a given year; and x, is the quantity
?roduced in region i in a given year. Qy is the amount transported

from region i to region j, and 7,,(Qy) is the cost of that transport.

7 A solution that incorporates first-order serial dependence in the distributions
of yields, applied to compute optimal storage rules for wheat, is given in an
unpublished manuscript by R. L. Gustafson entitled “The Storage of Grains to
Offset Fluctuations in Yields.”
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Based on the total value function.—The total gain in a given year,
for the nation as a whole, is defined as:

W=50(Y) = 231(C) =@ (59)

Thus the individual regional gains are assumed to be additive to get
the gain for the entire economy. The problem is, given the initial
supplies S, ..., Su, to find the storage rules 6, ..., 6, which
maximize the sum of discounted expected gains over some n-year
period, or, in the limit, over all future years.

Let Z;=Sl—01, so that Y1=Z1—Q1, where Ql:il Q“ is the

total amount transported out of region i. Let Q be the vector
Qi .« - ., Qu). We define the function X as follows:

NV/ P Zm)=1\%ax[;3x(Z1—Q:)-—iZj)Tu(Qn)] (60)

The problem of finding Q to get the value of A is exactly the same as
the maximization of ‘social pay-off’”’ as discussed by Samuelson
(9), provided the &’s are defined as areas under the demand curves.
Also, as Samuelson demonstrates, this maximization problem is
equivalent to the inter-spatial equilibrium problem for a free market.
In other words, just as we have shown the equivalence of the conditions
for inter-temporal equilibrium in a free market and the conditions
for the maximization of net gain to the general public (see page 48)
s0 Samuelson shows the equivalence of the conditions for inter—spatiai
equilibrium in a free market and the conditions for the maximization
of net gain to the nation as a whole, where total value is taken to
. be the integral of the market price function. Here we are concerned
with maximizing net gains both inter-spatially and inter-temporally.
We define the operator J as follows:

JoSy, .« . . s...)=ngD(Sl—Cl, cer, sm—cm)—lzw(CH
aE¢(Ci+xy, . . ., Cutxm)] (61)
where C is the vector (Cy, ..., Cn) and ng means the maximum
with respect to C, subject to the restrictions OSZiCiSZiS, and
C,>0 for all i.
We now write down the solution as follows:
Via=Maxr&:—Cy, . . ., Sa—Ca) =ZM(CII=AB,, . . , Su) (62)

¥1a=MazA\(S;—C}, .« «  Sa—Cu) —
° 'Z“Y:(CD‘H!E)\(CI‘FX» e oo Catxa)
(63)
=Gy, . . So) 63.1)
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Vl,3=l\%ax[)\(Sl—Cl, v Su—Co)—

>;71<oo+aEJx<ol+x;, o Catx)]
(64)
—InGS, . . ., So) (64.1)

and in general,
,Vl_,,:l\%ax[)\(Sl—Cl, ey Su—Co)—

>(C)+aBINCitxi, - - o, Cart%a)]
(65)
=J1\(S,, . . ., Sw) (65.1)

The carryover in each region, C;, or the storage rule for each region,
" 8,, thus becomes a function of the supplies in all the regions (S,, . . .,

To indicate the extent to which a multi-regional solution magnifies
~ the computational requirements, we estimate that, for cases similar
. to the applications discussed on pages 21-32, going from a 1-region
" to a 2-region solution increases the number of computational opera-
" tions by a factor of about 200, and going from a 1-region to a 3-region
solution increases the number of computational operations by a factor
of about 40,000.

Based on the marginal value function.—We next consider the use of
marginal value (or price) functions, p. For given py, . . ., pm, the price
in any region i in any year is, under spatial equilibrium, a function of
1) Zy, . . ., Zn), where Z;=8,—C,, and (2) the costs of transport
TU(i) j=17 L] m)- Th&t i.S, fOI‘ given T13, pl='l/l(zly AR Zm)° AS
shown by Samuelson (9), the functions ¢4, . . ., ¥ can, with some
effort, be determined. If we wish to maximize both inter-temporal
and inter-spatial gain, we must find regional storage rules 6, (i=1, .. .,
m) each of which is a function of Sy, . . .,

. - 'Thus, for a 2-year period (n=2), we find for each set of values
Sy, . . ., Sp) the values of Cy, . . ., Cy such that (for i=1, .. ., m)

.' a ES"!(Cl‘f‘Xl, ooy Cm+Xm)—'/’l(Sx—Cl, ooy Sm_Cm)—'Y’I(C!)=0 (66)

This gives 6,(S,, . . ., Sp), i=1, ..., m.
For n=3, we find for each set of values (S;, . : ., Su) the values
of Cy, .. ., Cp such that (fori=1, ..., m) ,

a EY(C,+x,—0,(Ci+x4, . . ., CotXn), .« oy .
Co+Xn—0m (Ci+xy, . . ., Cotxu)]—
¥(Gi—C,, . . ., Su—Cr)—7"1(C)=0
(67)
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This gives 0;5(S;, . . ., Sw), i=1, ..., m.

The procedure may conceptually })e continued until convergence is
reached, that is, until 6,,=0;,_1=90,, i=1, . . ., m. The computa-
tions, however, are formidable, even for the simplest case, that is, a
2-year, 2-region model, as may be seen from the following example.

'AN EXAMPLE FOR TWO REGIONS'AND TWO YEARS

Subgosekeach of two regions has the samé p, F and v, with the
F’s independent, and 73=75=7 and p(Y)=q—pY. Then the price
in region 1, ¢, is given by one.of the following:

1) If ¥,>Y.+1/p,

(Y., Yo)=q—(1/2)p(Yi+Y)—(1/2)r (68)
@) I Yot r/p>Y,>Y.—/p, |
% (Y,Y,;)=q—pY, (69)

®@) If Y,<Y,—7/p, S ‘
WY, Y)=q—(1/2p(Yi+Y)+1/2)r  (70)

A symmetrical solution holds for ;. ; _
. For region 1, the first term in equation (66) becomes:

aq—(1/2)ep (C,+Cy+2u)+

© C1—Cr1tr/p+x :
' (1/2)ap(C;—Cy—7/p) L . f Pt ) dxad () d et

x1=03—01—1/p+x1

© O3~Ci+r/p+xs

(1/2)ep &+ x0)f (%) dxif (X2)d x5

23=0¢J 11=03—C1—7/p+xs
and the second term becomes one of the following:
1) 9—(1/2)p(8;+8,—Ci—Cy)— (1/2)7, if $,—C,>8,—Cy+7/p
@ q—pE—C), if S;~Cpt r/p>8,—C, 8, Ca—1/p
@) 4= (1/2)p(S1+8—Ci—Co)+ (1/2)r, if 8,—C;<Sy—C—1/p
- Symmetrical expressions appear for the equation applying to region

2. The solution for n=2 consists of finding values (C,,C;) to satisfy
the two equations for each possible set of values (S;,S,).
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APPENDIX
NOTE 1.—MAJOR SYMBOLS USED

Discount factor=1/(1-}interest rate)

Coustant term in the linear marginal value function

Absolute value of the slope coefficient in the linear mar-
ginal value function

Maximized sum of discounted expected gains in all
future years;

B(S)=Lim V()

A probability (see page 57)

Cost of storage function, dollars

Marginal cost of storage function per bushel, dollars

Total value function (defined on pages 13-15), dollars

Marginal value, or price, function per bushel, dollars

Marginal value per bushel when utilization equals
29.46 bushels, dollars

Margilinal value function under conditions of war,
dollars

Flexibility of marginal value function;

e(Y)=—[dpo(Y)/dY] . [Y/p(Y)]

Elasticity of marginal value function; g=—1/e

Values of ¢ and %, respectively, at the point where -
quantity utilized equals 30 bushels per acre

Mean of probability distribution

Standard deviation of probability distribution

Carryover rule

Optimal carryover rule

This has two meanings, depending on the context:

(1) Optimal storage rule in the i™® year;

(2) Optimal stationary storage rule under the i*® set of

conditions

The result obtained at the i*® iteration, in computations

to obtain an optimal stationary storage rule

Carryover rule under war conditions

Carryover rule under conditions of war preparedness

Optimal carryover rule when harvest in each future
year is assumed equal to a known constant

A function defined on page 56 ’

A function defined on page 61

The function which is inverse to the function ¢

Carryover, bushels

An operator (see page 54) -

E uﬂiﬁr{um level of carryover (defined on pages 56-57),

ushels
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O*#
E

Level that the carryover will reach after two successive
“bumper-crop”’ years (see page 29), bushels

Mathematical expectation; if x;, ..., X, are random
variables,

E¢(a'l, . -‘°: ar: Xiye o o xn)=f_ R
N ¢(a1', e 8y Xy .oy X)dFi(x) . . . dFa(%0)

Expectation with respect to the random variable i

Probability distribution (usually of x)

Probability density function of %‘, or relative frequency

Alternative distribution of output

Probability density function of G

An operator

This has two meanings depending on the context:

‘(1) Value of S below which §(S)=0;

(2) Used occasionally to designate an arbitrary
- counstant

A function (defined on page 55) which depends on the
probability distribution of outputs :

A constant (defined on page 55) whose value depends on
the conditions of an application

Value of the marginal value function at Y=h

(1) Number of iterations (page 47);

(2) Number of regions (page 60)

Number of years and/or number of iterations

Some specific value of the marginal value function p(Y)

Price in year t (see page 15), dollars

Parameters in the linear marginal value function

p(Y)=q—pY .

Expected returns to storage in years 1, . . ., n (defined

on page 55)

(1) Interest rate (page 11);

(2) Also used occasionally to designate an arbitrary

constant. factor
Total supply in given year=carryover from preceding
year plus harvest, bushels ’

St=Ct—1_+Xt

Sum of discounted expected gains in years m, m-}-1,
s n

Maximized Vg, »

Gain occurring in year t

Harvest or output, bushels

Quantity utilized, bushels

Y=S—C=S—6(S)

In general, Latin letters that represent quantities are shown in
lower case when the quantities are assumed to be random and are
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shown as capitalized when the quantities are assumed to be given or
determinable.

NOTE 2.—THE ROSENBLATT SOLUTION

Rosenblatt (8) addresses himself to essentially the same problem
as that discussed on page 20, namely, finding a storage rule which,
under stationarity, maximizes the sum of expected gains in all future
years, where the gain in any year is the total value ofg the grain utilized
minus the cost of storage of the grain carried over.? However, for
mathematical convenience, he restricts himself to:

(1) A form of storage rule which makes the carryover in any year
a constant proportion (to be determined) of the total available supply
(carryin plus harvest), and :

(2) Application of the criterion of optimality only after the prob-
ability distributions of carryovers and quantities consumed (C and Y)
have completely stabilized. This restriction means that, in any
practical application of the rules, their effects during the first several
years of operation are completely ignored.

The combined effects of these two restrictions or assumptions lead
to storage rules which are in fact highly nonoptimal under the criterion
adopted, and which, if taken seriously as guides to public policy,
would result in the incurring of costs to the nation as a whole possibly
running into hundreds of millions of dollars.

The objections to the Rosenblatt approach may be outlined in
greater detail as follows:

1. It is not necessary to make in advance any assumption about the form of the
storage rule. The method of solution presented by Dvoretzky, Kiefer, and Wolfo--
witz (2) (as modified in this bulletin) permits the obtaining of solutions without.
any such prior assumption. )

2. Optimal storage rules under the conditions and the criterion adopted here’
(and the criterion of Section 3 of Rosenblatt’s paper) do not in fact turn out to-
have anything like the form assumed by Rosenblatt (see p. 69).

3. It can be shown that, using empirically plausible assumptions about the:
other conditions, a constant-proportion storage rule cannot be optimal, unless the
cost of storage function is assumed to take a form which is empirically highly
implausible. Consider equation (26.1) shown on page 46. With 6(S) =aS, this.

gives us
7' (C) =aEp[(1—2) (C+x)]—pl(1—8)C/a] (71)
, 7' (0) =aEp[(1—2a)x]—p(0) (72y
That is, the marginal cost of storage at C=0 is highly negative. For exaniple,
if p is linear (corresponding to Rosenblatt’s use of a quadratic weight function)
and p(Y) =q—pY, then :
| ¥ (0)=—(1—a)q—p(l—8)x (72.1)
where u is the mean yield.
Also, v
7"'(C)=a(1—a)Ep’'[(1—8) (C+x)]—(1—2),'[(1—8)C/al/a (73y
28 Actually, Rosenblatt’s criterion is stated as the minimization of the sum of’
expected “losses’” in all future years, where the loss in any year is the ‘“‘weighting”’
attributable to the quantity of grain utilized plus the cost of storage of the grain

carried over. But the weighting function is simply the negative of our total value:
function, plus a constant; so that the two criteria are mathematically equivalent.
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If p(Y) =q—pY, then p’(Y)=—p, and

7"(C)=—a(l—a)p+(1—a)p/a=(1—a)(1—a)p/a (73.1)
Thus for p(Y)=q—pY, 7/(C)=0 when
C=aq/(1—a)p+ap/(1—a) (74)

We can minimize the non-optimality of the Rosenblatt results if, instead of
taking the carryover as a certain proportion of total supply (S), we make it a
certain proportion of total supply minus the minimum possible harvest (8 —Xmia).
This does not change any of the mathematics of the solution, but means simply
that we are ‘“changing the origin’’ in the measurements of S, Y and X. This
modification, which minimizes the degree to which constant-proportion rules
deviate from optimality and hence presents the Rosenblatt results in their most
favorable light, is used in the following comments where we compare constant-
proportion rules with optimal rules.

Applying the above results to a specific case, for example, to the conditions

applicable to fs (see page 30), we find that a constant-proportion rule is optimal
only if the marginal cost of storage v/ (C) is negative up to a carryover C of about
18 bushels per acre, which is more than three times the average carryover that
results under the Rosenblatt solution.

4. The Rosenblatt results maximize 2 the sum of discounted exgected gains,
starting with the current year, only if the current initial supply, S, equals the
long-run expected stable or ergodic value of 8. If the initial S is any other value,
the gains and costs of the storage program during the first several years of applica~
tion of the rule, before stability in all the probability distributions is attained, are
simply ignored. But in the sum of discounted expected gains, the first years of
the period are the most important, and a storage policy, to be practicable, should
be applicable to any set of initial conditions. One result of Rosenblatt’s restric-
tion is that nowhere in his solution does a discount factor or interest rate appear;
this alone would indicate that the validity of the solution is, from an economic
viewpoint, rather implausible.

5. As a result of his assumptions, the Rosenblatt storage rules bear little re-
semblance to rules which are in fact optimal. They do not even result in a correct
order of magnitude of carryover levels, under alternative sets of conditions. Con-
sider the seven alternative sets of conditions underlying optimal rules 8;, .. . &,
respectively, as shown in table 1. The storage-rule proportion, a, which minimizes
expected losses, and the resulting stable expected value of carryover, EEC, under
the Rosenblatt solution, are given by:

_Vpe/yu—1 (75)
vpai/v'nt1
EEC=au/(1—a) (76)

where o?=variance of yields, p=mean yield, and v’ =(constant) marginal cost of
storage. If po?/uy’'<1, a=0.

Values of a and EEC for the seven sets of conditions, taking the origin for S, Y
and X at Xn1a=19 bushels per acre, are shown in table 6, together with the equilib-
rium level, C¥, of the corresponding optimal rule.

A graphical comparison of rules that result from the Rosenblatt approach
and the optimal rules developed in this bulletin is shown in figure 8, using the same
alternative conditions as in table 6.

6. An idea of the magnitude of the economic loss to society that would be in-
curred by adopting the Rosenblatt solution, instead of using optimal storage rules,
is obtained by using the concept of expected returns to storage, as defined on
page 55: the difference between the sum of discounted expected gains when the
optimal policy is followed and the sum of discounted expected gains when the
carryover in every year is zero. We may readily extend this concept so as to
apply it to any storage policy, whether optimal or nonoptimal: for any given stor-
age policy, the expected return is the difference between the sum of discounted

# Subject to his constant-proportion storage rule restriction.
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TaBLe 6.—Corn, oats, and barley, corn equivalent: Storage rule proportion and re-
sulting expected stable carryover per acre under the Rosenblatt solution compared
with the equilibrium carryover level per acre under an optimal rule

Rosenblatt results
Equilibrium
Case t cangover
Storage rule | Average carry- (C%
proportion (a) | over (EEC)
Bushels Bushels
) U 0 0 0.3
R 0 0 .5
S .19 2.5 .6
4 e .19 2.5 1.4
B e .10 1.1 .7
R .31 4.8 2.7
e .02 .2 .4

1 See table 1 for specified conditions.

expected gains when the given policy is followed and the sum of discounted ex-
pected gains when the carryover in every year is zero. The expected social loss,
then, incurred by following any given nonoptimal policy may be defined as the
expected return to the optimal policy computed for the given conditions minus
-the expected return to the given nonoptimal policy.

FEED GRAINS* STORAGE RULES PER ACRE
OPTIMAL RULES COMPARED WITH
CONSTANT PROPORTION RULES

Under Alternative Conditions Specified in Table 1
CARRYOVER (BU.)-C

8

6 a; is the constant proportion rulg‘

%
o
~ o,
under conditions that apply for O; /Zéf%
A

4 A

] T o % i
- oMo o ——=F
4 T & o // /— -I—
P o MRS FE I o T oon / pr 2=’ ]
(g )Pt ot B EY SR LESE SEEE Ay - et g Mo WO

19 21 23 25 27 29 31 33 35 37 39
TOTAL SUPPLY (BU.)-S

‘CORN, OATS AND BARLEY, CORN EQUIVALENT,
U. 8, DEPARTMENT OF AGRICULTURE NEG. 4113~57 (4) AGRICULTURAL MARKETING SERVICE

Fiaure 8.—Storage rules developed under the constant-proportion assumption
used by Rosenblatt differ greatly from the optimal rules developed in thic bul-
letin and, if taken seriously as guides to public policy, would result in large
costs to the nation as a whole.
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The expected returns for the optlmal.rule 6, (see table 1) have béen
computed for alternative values of the initial supply S, and are given
in the following tabulation:

Per acre
Initial supply Expected

return

Bushels ' Dollars
3l orless. 0. 32
B2 . 35
B4 e . 58
86 - e .95
B8 e 1. 80
40 e 2. 83
4 e 4. 16
44 e 5.79
46 e 7. 67
48 e 9. 52

50 . 11.28

The Rosenblatt solution, when applied to the conditions for which 61
: is optimal, results in zero carryover in every year (see table 6). The
expected return uunder this policy would therefore be zero for any
~initial supply S. Hence the expected returns for the optimal policy
¢ are in this case equal to the expected losses that would be incurred
.under the Rosenblatt solution policy. When we multiply the above
. figures by 140 million acres to convert them to national aggregates, the
" expected losses range from a minimum of about $45 million to a
| possible maximum of $1,500 million or higher, depending on the level
i -of initial supply.
. As another example, consider the condltlons for which 9, (table 1) is

‘optlmal The expected returns under s, for alternative levels of
initial supply S, are:

Per acre
Initial supply Expected

return

Bushels ’ Dollars
29 orless e 11. 41
_____________________________________________ 11. 48
32 e 11. 97
i 34 e 12. 97
86 e 14. 50
38 e 16. 57
40 e 19. 08
42 e 21. 58
44 e 23. 98
46 e 26. 30
48 e 28. 54
50 .. Y e 30.71




CARRYOVER LEVELS FOR GRAINS S 71

“The Rosenblatt solution, when applied to the conditions for which

A is optimal, and taking the S-axis intercept of the storage rule at
Xpm=19 bushels per acre (to minimize the non-optimality of the
‘solution), results in a storage rule proportion a=0.314 and a long-run
expected carryover EEC=4.78 bushels per acre (see table 6). We
‘have not.computed a complete table of expected returns under this
rule, for alternative values of initial supply S. However, a comparison
can be made between the two rules by taking the situation most
Jfavorable to the Rosenblatt rule, namely at the point where the initial
supply S=34.24 bushels per acre, the long run expected level of S
‘which corresponds to the long run expected carryover EEC=4.78.
For an initial S=34.24, the expected return under the optimal rule is,
by -interpolation in the above table, about $13.12 per acre. The
-expected return under the constant-proportion rule (for initial S=
34.24) is obtained as follows: : '

(1) Net gain in current year
= (Total value under rule)— (Cost of storage)

— (Total value with zero carryover) 77)
=(qu—p#’/2)— (v’ EEC)—[34.24 q—p (34.24)*/2] (77.1)

since u is the amount utilized under the rule and 34.24 is the
amount utilized with zero carryover. Substituting q=6.50,

- p=0.167 (p. 24), v'=0.04 (table 1), EEC=4.78, and p=29.46,
gives:

Net gain in current year=—$5.92. (77.2)

_(The negative sign, indicating a net loss, is, of cours.e, what we
* should expect.)

(2) Expected net gain in each future year
-+ '=E (Total value under rule)—E (Cost of storage)

—E(Total value with zero carryover) (78)
=EE(qQY—pY?/2)—y'EEC—E(qX—pX?/2) (78.1)
=p(Var X—Var Y)/2—+'EEC _ (78.2)

where Var X is the variance of X and Var Y is the long run
(stable) variance of Y. (The last step makes use of the fact
that the long run expected value of Y, EEY=y.) It can be
shown that Var Y=(1—a)26?/(1—a?), where ¢>=Var X, so that
. Var X—Var Y=2a¢?/(14+a). Substituting p=0.167, ¢°=9.18,
2=0.314, v'=0.04, gives: ) _

Expected net gain in each future year=%$0.175. (78.3)

(3) The sum of discounted expegted net gains in all future years is
obtained by multiplying the result of (2) by 3} a*=a/(1—a).
. n=l1
Substituting «=0.98 (table 1) gives: '
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Sum of discounted expected net gains in all future years=
(80.175) (49)=298.59. (79)

(4) Adding the results of (1) and (3) gives:

Expected return under the constant-proportion rule (for initial
S=34.24) equals $8.59—$5.92=§2.67. (80)

Comparing the expected return of $2.67 under the constant-proportion
rule with the expected return of $13.12 under the optimal rule for the
same conditions, we have an expected loss to the entire nation of
$13.12—$2.67=%10.45 per acre incurred by adopting the Rosenblatt
solution instead of an optimal rule, even under the assumption about
initial supply which is most favorable to the former. Multiplying the
per acre loss by 140 million acres gives a national aggregate loss of
about $1,500 million.

NOTE 3.—A STORAGE RULE UNDER WHICH THE ADDITION
TO CARRYOVER IS A FUNCTION OF CURRENT CROP
ONLY

A storage program might be thought of as an attempt to decrease
the variance of & probability distribution, that is, an attempt to con-
vert the distribution of outputs into a distribution of quantities
utilized with the same shape but smaller variance. The objections,
operational and analytical, to the direct application of such a concept
in the derivation of storage rules were set forth on page 8. A nu-
merical example illustrating the details of how such a direct applica-
tton would work out is given here.

Let us consider wheat alone, and treat the United States as a single,
closed market. We assume a constant acreage of 68 million acres,
approximately the average for 1919-50. Actual yields per seeded
acre for all wheat during 1919-50 are considered as random inde-
pendent observations. We thus have a sample of 32 observations
with a mean of 13.05 bushels per acre and a standard deviation of
2.60, and an approximately normal distribution.®® We assume, then,
that annual output (X) is normally distributed with mean u,=13.05%
68=887 million bushels and standard deviation ¢;=2.60X68=177
million bushels. The probability of output falling more than 20 per-
ceut below average is about 16 percent.

Suppose we wish to make the amount added to carryover a function
of the current crop and to alter the variance of the distribution so
that the probability that the quantity of wheat utilized (Y) in any
year will fall more than 20 percent bel%w average is reduced to 5 per-
cent, instead of 16 percent. The criterion must be kept in terms of
probabilities, unless we go to the extreme of complete stabilization, or
unless we state the criterion in terms of the change in the variance
itself. The simplest form for such a rule is Z=0.39 (X-887), where
Z is the amount to be added to carryover. Z can be positive or nega-

3 A goodness-of-fit test for normality gives a probability level for x? of more
than 90 percent.
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tive, of course. 'This rule would result, under the assumption stated,
in & normal probability distribution of Z with mean u,=0 and standard
deviation ¢,=69 and a normal probability distribution of quantity
utilized with u,=887 and o;,=108. Here, Y=X—Z, that is, the loss
of grain in the storage operation itself is assumed negligible.

" Since we assume independence in yields between years, the total
amount added to storage after n years of operating the rule is

Z1+Z2+ “ o -I—Z,,=EZ (81)

a normally distributed variable with zero mean and standard devia-

tion o=+n . 0,=69%/n. Since the first years of the period of
application of the rule may themselves be years of low yields, it would
be necessary to start the period with grain on hand. Thus, for ex-
ample, in order to be 99 percent sure of having enough grain in storage
to operate the rule for one year, the storing agency would need to
start the year with 161 million bushels on hand. To be 99 percent
sure of having enough grain in storage to operate the rule for 9 years,
thehagtglcy would have to start the period with 483 million bushels
on hand.

The effects of allowing for sampling error in the distribution esti-
mates also can be illustrated. Confidence interval estimates at the
90 percent probability level for the mean and standard deviation of
yield are: 12.27<u<{13.83 and 2.16<¢<3.30. Based on the national
aggregate of 68 million acres, the confidence intervals for output are:
835< uy<<941 and 147<0,<224. If we (1) ignore the possible error
in the mean 3 but take each of the confidence limits for ¢, and (2) use
the same criterion for stability in quantities utilized and the same
kind of storage rule as previously, results shown in table 7 are obtained.

TABLE 7.—Wheat: Upper and lower limits for storage rules and related quantities
obtained when the addition to carryover i8 a function of current production only and
allowance 18 made for sampling error in the standard error of output

Limit
Item Unit
Lower | Upper
Standard deviation: ,
Output, ox! . Mil. bu_._| 147 224
Storage rule, oy - ____________ __-do_____ 39 . 116
Probability of an output less than 80 percent of | Pet__.___ 11 22
average.
Storage rule as a proportion of the deviation of |- _________ .26 .52
the crop from average, Z.
Initial stocks required to be able to operate the
rule with 99 percent certainty for—
lyear . Mil. bu__| 91 270
9 years e ——-do_____ 273 810

1 Limits shown are based on a confidence interval at the 90 percent probability level.

81 Errors of this sort imply that application of the rule results in the level of
carryover trending upward without bound, or downrward:to zero.
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NOTE 4.—RELATIVE IMPORTANCE ON OUTPUT OF VARIA-
TIONS IN ACREAGE AND YIELD RN

The total vzmatlon in acreage normally is quantitatively of less
importance than the variation m yield in its effect on variability. of
output. This is illustrated by the data for wheat and corn in the
United States as shown in table 8.

TABLE 8.—Wheat and corn: Relative variability in acreage and yield per seeded acre
as indicated by specified coefficients !

Wheat, 1919-50 Corn, 1929-50
Item -

Acres Yield | Acres | Yield
Millions Bugshels Millions Bushels -
Mean_ _ ___ . 68. 2 13.0 95. 5 28.3
Standard deviation_____________________ 7.4 2.6 8.4 7.2
Range___ . o _ 31.7 10. 3 28.6 28.0
Minimum____ ___._____________________ 53.0 8.0 84.4 14. 4
Maximum_ _________ o ________ 84.7 18. 3 113.0 42 4
Average year-to-year change_ ___________ 4.6 1.4 3.1 4.0

As a percentage of the mean: Percent | Percent | Percent | Percent
tandard deviation_________________ 10. 8 19.9 8.8 25. 4
Range___ o __ 46. 5 78.9 29.9 98. 9
Minimum minus the mean._________ —22.3| —38.7| —11.6 —49.1
Maximum minus the mean__________ 24.2 40. 2 18.3 49. 8
Average change____________________ 6. 8 10. 8 - 3.3 14.1

1 Published series on yield per seeded acre begin in 1919 for wheat and in 1929 for corn.

The total variation in acreage is made up of predictable changes as
well as unpredictable. If we were to compare the relative magnitudes
of unpredictable variations in acreage and yield, the former would be
of stﬂf less importance than indicated by the figures for total variation.

This subject is discussed in detail 1n a recent Senate Committee
report (12, pp. 17-30).

NOTE 5.—THE SOLUTION USING THE TOTAL VALUE (9)
FUNCTION

As has been indicated, this solution is adapted from that by
Dvoretzky, Kiefer, and Wolfowitz (2). Some modification was re-
quired because of the different structure of the problem. Also, the
concepts ‘‘returns to storage” and ‘‘equilibrium level of carryover”
do not have counterparts in the inventory problem considered by
these authors.

The solution as written out here assumes, for simplicity’s sake,
independence in probability distributions of yields between years.
Modifications required to incorporate joint probability distributions
of yields in all years are not, formally serious, though they would in
general substantially increase the number of computatlons Modifi-
cations required for serial dependence of specified kinds are discussed
on p. 59.
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We first give the solution for a set of optimal storage rules for an -
n-year period, with no assumption of stationarity. Using the nota-
tion in the body of the bulletin, we generalize by letting Vi . be
the sum of expected gains in years m, m+1, m+2, . . . n, discounted
back to year m. That is,

Vapn=WataEWeii+?EWaiot. . . o =EW, (82)

\

If V,M is the maximum Vy, , for given Sy, we have:

Vo= Max [5,3,—Cp) —n(C)]=5) (83.1)
Vosam, Mox [ 60msBiimCod = s Coc) +
o Cu IR | 2
—Yar(Sar) (s8Y) | (84.2)
Vacan=, Mox [ d0aoes—Cocd = ersCot)+
& Vot CorF ) dFai® | S (833) .

=VaaGad) (G7) (843)

and so on} till we reach ,
V= Mox [66-Co 1@ +a [ bCH9aRo]| @59

—(S) Gay) (84.4)

ffm,n is thus a function of S, obtained by maximizing, for each value
of Sy, the expression in square brackets. The optimum carryover
for year m, for given S, is that value ¢, which maximizes the same
expreéssion. ‘'The optimal storage rule 6, is the set of all such pairs
(Sw, Cum). .

Thus, the computations are actually carried out on the gain
functions, with the storage rules coming out more or less as by-prod-
ucts. This is the complete solution for the n-year non-stationary case.

For the stationary case, where 4, ¥ and F are the same in each year,
we note first that Vl, 1+m 88 8 function of S, is the same as V,,, nim 88
a function of S, for any m and n. We now define the operator J,
operating on any function ¢, by

J¢(S)=(%\i[ggs[a(s—C)—v(C)-l-aLm¢(C+x)dF(X)-I (85)
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Then, omitting subscripts from S, and C;:
V1= Max [36—C) —v(O)]=4() (85.0)

9,..= Max 8(S—C)—7(C)+af w8(0+x)dF(x)]=J6(S) (85.1)
0<0<L8 0

#0= Max [66-0—7(O)+a L "3 (C-I—x)dF(x)]:J’B(S) (85.2)
and in general .

¥iw= Max [56—0)—7(@) +e [ I=9(C+0)dF @ [-345(3)
0<0C<8 [} (85 3)

For given n, we obtain 6, the optimal rule for the first year, by noting
for each value of S the value of C that maximizes the expression in
square brackets. :

The only remaining question is, Does the process converge so that
as n gets larger and larger the resulting 6, gets closer and closer to the
best stationary rule ? In other words, if we designate by 8(S) the

sum of discounted expected gains to infinity when the best rule 8 is
followed every year, does Lim J"5(S)=pB(S)? This seems obvious,

n—o
but in any case, a formal proof of a stronger statement can be offered,
namely, that if g(S) is any bounded function, then Lim J°g(S)=g(S).
Do

This implies that we could reduce the number of iterations necessary
to achieve a given closeness of approximation, to §; by starting with
some g(S) which is closer to 8(S) than is 6(S). This result was not
used in the actual computations, however, because (1) it was not
obvious how to find a g(S) that would be much better to start with
than 8(S) itself; (2) it was felt to be somewhat advantageous to
follow a procedure with as much intuitive plausibility as possible;
(3) by starting with 3, each iteration produces in itself a result which
has common sense meaningfulness, that is, a storage rule which is the
optimal rule for the first year of an n-year period (in the case of the
(n—1)*™ iteration).

However, the proof, which like the rest of this discussion is adapted
from Dvoretzky, Kiefer, and Wolfowitz (2), is recorded here for
possible use in future applications. We first break the operator J
mto two parts I and G so that J=1 G where

I#(S)= sup [6(5—C)+¢(C)] (86)
0<C<8

GH(C)=—7(C)+a om¢(c+x) dF (x) 87)
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With 8 defined as in the preceding parﬁraph, the maximized sum of
discounted expected gains in all intervals except the first, is

« f "B(Cy+x) dF (x) , (88)

So we can write:

BS)= sup [8(8—0)—7(C)+a f “B(C+x) dF(x)]

<C<8
=JB(S)=IGB(S) (89)
Since §(S) is bounded, B(S) also must be bounded and so must 8(S)—
g(S). Let
sup 1B(S)—g(S)|=M (90)
Then
sup |GB(S)—Gg(S)| <M (91)
since o
GB(S)—Gg ()=« . [B(8+x)—g(5+x)]dF (x) (91.1)
<e [ “supls®) —g(R)|4F ) (091.2)
=a sup|B(R)—g(R)|=aM (91.3)
R2>0
Also,
sup|IGA(S) ~1Gg(S)| <eM (92)
To prove this, we must show that
sup 1 (S)—Iy(S)| < sup [61(S)—2(S) I} 92.1)
For given S, let
5(S—R)+¢:(R)=¥a(R) (0<KR <LS) (92.3)
and :
8(S—Z)+¢2(Z)=y,(Z) (0<Z<V) (92.4)
Then
‘ . 0<R<S
AR h@<W®—n@ { y25 @29
and

. , 0<R<S
inf 4@ —h@<hBD—hD{gsps €29

0<R<
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"We take sup with respect to Z on both sides:

inf yy(R)— inf yu(Z) < sup [(Z)—¥a(B)]  (92.7)
0<R<S 0<Z<8 0<z<8
11(S)—1¢2(S) < sup [¢1(Z)—¢3(Z)] (92.8)
0<Z<8
Now let S vary, and take sup with respect to S:
sup [16,(S) —16,(S)]1< sup [6:1(S)— ()] (92.9)
5 820 820
Sirhﬂa,rly, by switching subscripts:
sup [I¢,(8) —I¢:(S)]1 < sup [¢:(S) —¢1(S)] 1 (92.10)
‘ 8>0 820
Therefore,
sup [I¢(S) —I¢3(S)| < sup [¢:(S) —:(S)| (92.11)
820 8>0

So we have shown that

sup |JB(S)—Jg(S)| <aM (92
8>0

Repeating n times, we have

sup |J°8(S) —J'g ()| <a"M (93)

and since JB(S)=B(S), we conclude
%_)113 J°g(S)=8(S) (99

This completes the proof.

We have, then, the result that J°5(S) approaches a limit as n gets
larger, and the resulting 6, converges to the best stationary rule
4. The question arises, How close are we to convergence after any
given number of iterations? This cannot be answered exactly, of
course (if it could, we would be through before we started), but the
speed of convergence can be seen by taking the difference J%3(S)—J=-1
8(S). In the ﬁmit, this must be zero, and one can continue the
iterations till it is as close to zero as desired. In practice, however,
it turns out that this difference becomes nearly a constant long before
it diminishes to zero. It can easily be shown that if J* §(S)—J=~15(S)
were a constant, then the storage rule would have reached convergence,
as further iterations would make no further change. Hence in most
cases little is gained by continuing the iterations beyond the point
where J°5(S)—J2~15(S) is nearly constant.
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NOTE 6.—MATHEMATICAL EQUIVALENCE OF SOLUTION
.-PROCEDURES USING THE MARGINAL VALUE (p) FUNC-
TION AND THE TOTAL VALUE (5) FUNCTION

Year n.—C=0 under each procedure.
* Year n—1.—Using §:
Viae1,n=8(—C) —v(C)+aEs(C+x) (95.1)
To maximize with respect to C: |
| dV,_1,0/d0=—pE—0)—7'(C)+aEp(C+x)=0  (95.2)

This is identical to the condition used in the p— procedure.
- We now check the second order condition:

d*Vy1,0/dC?*=p' S—C)—7"(C) +aEp' (C+x)<0  (95.3)

gince p’ <0 and v’/ >0.
Year n—2.—Using 6:

Vaos, n—a(S—C)—-r(C)+aEVn-1 a(C+x) (96.1)
To maximize with respect to C:
dVay,0/d0=—p(8—C)—7'(C)+aEV,_1.(C+x)=0 (96.2)

iJsing p: .
—p(B—C)—7'(C)+aEp[C+x~b,_,(C+x)]=0 (96.3)

For equivalence, we must show that

Viet,0(8)=p[S—8a_1(8)] 97)
for every S. : \ v
- Va1,2(8) =88 =81 (S) — (b1 (S)1+oEs[ 1 (S) +x] (97.1)
v Vion®)=pIS =811 (8)]- [1 =81 (8)]—+'[a-1()]- &1 (S)+
oEplb -1(8)+x]- -0._1(S) (97.2)
=plS— 01 (S)]+8.1(S) - { — S — s (S)]—
/ 7 [a-1(8)]+aEplfa-1(S) +x1} (97.3)
= olS— 6 )], | 07)

This completes the proof of equation (97).
The second order condition is:

@’Yp—n.n/d02= o' (8—C)—v"" (C) +aEp’'[C+x—bp(C+x))
[1—6.,(C+x)]<0 (98)



80 TECHNICAL BULLETIN 1178, U. S. DEPT. OF AGRICULTURE

since 0 <¢’'<1.
To complete the proof, we show that if equivalence holds for n,
n—1,. . ., n—k+1, n—Kk, then it holds for n—k—1:
For n—k:
dVa_x,o/dC=—p(S—C)—7' (C)+aEV s y41,2(C+x)=0 (99.1)
and .
—p(S—C)—7'(C)+aEp[C+x—h 111 (C+X)]=0  (99.2)
Hence,
d aEV;—k+l,n(C+x)=aEp[C+x_én—k+l(c+x)] (99.3)
an

aEV;—xH, n[én-—k(s) +X] =aEp { én—k(S) +x— én—k+1 [én—k (S) +x] } (99-4)'

For n—k—1:
Using 6:
Vax1,0=8(8—C)—7(C) +aEV,_x,.(C+x) (100.1)

To maximize:
dVas1,0/dC=—pB—C)—v'(C)+eEV, xa(C+x)=0 (100.2)
Using p:
—p(8—C)—7'(C)+aEpC+x—B8,+(C+x)]=0  (100.3)
For equivalence, we must show that

Vi xu(S)=p[S—bax(8)] : (101)
for every S.

Vaxn(S) =8[S—bo_x(S)] —¥[6a—x(S)]+aEVy_si1,alfa_x(S)+x] (101.1)
Vs 1 n(S) = IS — o (8)]- [1— 8 x(S)] =7 [Ban(®)] - B(S)+  (101.2)
aEV::—k-l-l, n[én—k(s) +X] . é;:—k(s) '

= p[S—Bps(S)]+8.x(S) { — pIS—ba_x(S)]—

'7'[én_k(s)]+aEV;-k+1.n[én—k(S) +x]} (101.3)
= p[S—Bax(S)] (101)

This completes the proof of equivalence.
The second order condition is:

A7V, _y1,0/dC?=p’ (S—C)—7""(C) +aEp'[C+x—b1-x(C+x)]
[1—6._x(C+x)]1<0 (102)
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NOTE 7.—EQUIVALENCE OF CHANGES IN o AND +’ (SEE
PAGE 49)

(1) If 0 satisfies

aJ;mp*[C-l-X—G(C-I-X)]dF(X)—p*[a_l(C)—C]—‘/'(C)=0 (103.1)
where p;“(Y)=rp(Y), then the same 6 also satisfies

« L plC+x—8(CHx)1dF(x) — o[- HC)=Cl—7/(C)=0  (103.2)
that is, it satisfies

« L " p[C4x—0(C+x)dF(x) — 61 (C) —Cl— 1/ (=0 (103.3)

Hence, changing p(Y) to p*(Y)=rp(Y) is equivalent in its effects on
4 to changmg v "(C) to ¥*(C)=(1/r) v (C) Also, if p*(Y)= rp(Y)
and ¢ *(C)=ry’(C), then the same.f is optimal under:either p*,

v *or p, v’

(2) If 6 satisfies
o f ¥ HO-+x—0(C+x)]dF(x)—p*[8~1(C)—C]—7'(C)=0  (104.1)
0
where p*(Y)=p(Y)+K, then the same 6 also satisfies

a f " o[C x—8(C+-x) 1dF (x) +-aK —p[8-1(C) —C]—
K—9/(C)=0 ,(104.2)
that is, it satisfies
« f " p[C-Hx—0(C+x)1dF(x) —p[9=1(C) —Cl— [y’ (C)+ (1—a)K]=0
(104.3)

Hence, changing p(Y) to p*(Y)=p(Y)+K is equivalent (in its effects:
on ) to changing v/ (C) to

Y*C)=7v'(CO)+(1—a)K (104.4)
(3) If 9 satisfies

o L " *C+x—0(C+%)]dF(x) —p*[0~'(C)—C]—7'(C)=0 (105.1)
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where p*(Y)=rp(Y)+K, then the same 6 also satisfies

aJ;m rp[C+x—0(C+x)]d.F:(x) +aK~—r1p[8~(C)—C]—K—v'(C) =0

(105.2)
that is, it satisfies ‘

@ J; i p[C+x—0(C4x)]dF (x) —p[6~'(C) —C]—(1/0)[v’' (C) + 1—a)K]=0
(105.3)

Hence, changing p(Y) to p*(Y) rp(Y)+K is equivaleunt in its eﬁects
on 6 to changing v’ (C) to .

Y*C)=1/r)y (C)+(1/r)(1—a)K (10{5.4)

NOTE 8.—RELATION BETWEEN OPTIMAL STORAGE RULES:
UNDER DIFFERENT YIELD DISTRIBUTIONS (SEE PAGE 50)

To simplify the notation here, consider S, Y and x to be measured
as deviations from p. That is, wherever 5 appears in this note it
means S—p, and similarly for Y and x. Hence, in this note, u=0.
Let G and F be alternative probability distributions of x such that if’

g and f are the respective probability density functions, g(rx)=(1/r)
f (x). Then G has the same mean p as F, and the standard deviation
of G is r times the standard deviation of F, i e., og=roy.

If 4, is the optimal storage rule under G it satisﬁes
| POy —to Oyl @iy —olis O —Cl=7 (=0 (26.5)

Now define 6*(S)= (l/r)oo(rS) Then 6*1(C)= (l/r)og‘(rC), since
if we set C=0%(S)=(1/r)f(rS) and solve for S, we have

rC=.00(rS) © (106)
f5'(rC)=rS (106.1)
and
(1/r)85'(xC)=S=0*-1(C) (106.2):
Also, : \
0(S)=r8*(S/r) (106.3):
and

631(C)=r6*-1(C/r) (106.4):
Thus, 6* satisfies o

af lC+y—19*(Clr+yle)dy—olo*~*(C) —Cl—7'(©)=0
(107),
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Now let p*(Y)=p(rY), that is, p(Y)=p*(Y/r). . Then 6* satisfies

'aff p*[Cfr+y/r—6*(Clr+y/1)]g(y)dy—p*6*~ (C/r) —C/r]—7' (C)=0
: S (107.1)

But sinice this is true for any .value of C, then if v/ (rC)=+"(C) (for
example, if v’ is constant), 6* satisfies ‘

a‘f " pHCHyr—0*(CHy )l (y)dy—p*8*~ (C)—Cl—' (C)=0

—®

[ N : (107.2)

Now let y/r=x, so y=rx and g(y)dy=g(rx)rdx= (1/r){(x)rdx=f (x)dx.
Then 6* satisfies -

| af ) b'f[b?ryz‘é—b*(C+x)]f(x)dx—p*[0*“‘(C)—C]—v’(C)=0 (107.3)

Iiéﬁée," to find fs, we find 6* which satisfies the last equation, and
then éG(S)=r0*(S/r) (where S, it is remembered, is here measured
from:p). :

NOTE 9.—PROOF OF THE METHOD OF OBTAINING THE
OPTIMAL STORAGE RULE ¢ FOR THE CASE WHERE
FUTURE OUTPUT IS CONSTANT (SEE PAGES 53-54)

For simplicity, the circumflex A is omitted from 6 in this note, it
being understood that we are dealing with an optimal rule. The seg-
ments of the rule are designated 6;, 6;, 65, . . ., it being understood
that these are segments of a single rule and not different rules for dif-
ferent years (asin the earlier notation). The initial point for segment 6,
(thelower end of the segment) is (C,,S,), where C,=0. Theterminal point
for segment 6, (the upper end of the segment) is (C,S,) (i=1, 2,3, . ..).
Our object is to determine the segments of the optimal rule, 6,, 6;, . . .,
and, in particular, to determine the values of the segment connecting
points (Cy;,Sy) (i=0,1,2,...),given the discount factor «, the (constant)
marginal cost of storage 4/, and the marginal value function p(Y).

We designate the constant future harvest by h, and define the
linear operator D by DZ=0oZ—+’. Starting with the “fundamental”
equation for optimality of the storage rule 6,

’ a'J;m p[C-+x—0(C+x)1dF (x)—7' (C) —p[6(C) —C]=0 (26.1)

this becomes, for constant output h and constant marginal cost of
storage v/,

ap[C+h—6(C+h)]—7" —p[67(C)—C]=0 (26.6)
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which may be rewritten as
67(C)=C+p~*{ap[C+h—6(C+h)]—7"} (108)
This is the basic equation to be used in the'derivation. -
For C=0, 671(C)=S, (the intercept of 6 on the S-axis), so, from

equation (108):
So=p""{aph—6(h)]—~"} (109)

If <0 and «<1 and 9’>0, then 6(h)=0, since if 6(h)>0, then
Se<h, which contradicts 8(h)>0. Therefore,

So=p""[ap(h)—']=p"{Dp(h)] (41)

and we have determined the initial point (C,,S,) for the first segment
0..

' We thus have 6(S)=0 for S<S,, which gives 6(C+h)=0 for
C+h<8, or C<S,—h. It follows that [from equation (108)] for
0<C <Sy—h, the inverse storage rule §7(C) is given by

67'(C)=C+p"lap(C+h)—7'] (108.1)

where 6, is the first segment of the rule, and is completely defined by
the expression given. The terminal point of this segment is:

C;=S,—h (110.1)
S;=071'(So—h) (110.2)
=So—h+pap(Se) —7'] (110.3)
=So—h+p7{D%(h)] (110.4)

We thus have 6(S)=6,(S) for S;<S<S,, which gives 6(C+h)=
6,(C+h) for S,<C+h<S,, or S;—h<C<S,—h. It follows (from
equation (108)) that for S,—h <C<S,—h, the inverse storage rule
6-1(C) is given by ‘

03'(C)=C+p"{ap[C+h—6,(C+h)]—7'} (108.2)

where 6, is the second segment of the rule, and is completely defined
by the expression given. The terminal point of this segment is:

C,=S,—h (111.1)
S;=03(S;—h) (111.2)
=S,—h+p " {ap[S;—6:(S:)]—7"} (111.3)

=8;—h+pap(S;—C)—7] (111.4)
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=S8;—h+p{ap[p™'D?*p(h)]—+'} (111.5)
—h+p7aD?(h)—~'] (111.6)
—h+4p7[D?p(h)] (111.7)

Continuing the proof, by induction: If 0(S)=6,4(S) for
S,:2<8<8,.,, where the terminal point of 8,_; is -

C|-1=Sl_2'—h (112.1)
Si-1=8;-2—h+p7'[D'p(h)] (112.2)

then it follows [from equation (108)] that for S, ;—h<C<S, ,~h,
the inverse storage rule 67'(C) is given by

071(C)=C+p{ap[C+h6,_,(C+h)]—7'} (108.3)

where 0, is the i*" segment of the rule, and is completely defined by the
expression given. The terminal pomt of the i*® segment is:

C,=S,.,—h (44)
8;=67'(S;-1—h) (113)
=8 1—h+p{ap[S;-1—01-1(S11)]—7'} (113.1)
=8.1—h+p7ap(S1-1—Ci) —7'] (113.2)
=8i1—h+p"{ap[p~'D'p(h)]—7'} (113.3)
=8S1.1—h+p7[D*p(h)] (42)

To complete the proof, we check that the segments are connected,
that is, that the terminal point of the (i-1)™ segment lies on the jth

segment

?
07'(Ci-) =Ci1+p{ap[Ci-1+h—0,,(Ci-+h)]—7'}  (114)

that is, .
Si1=CprbrH{apSia—tiaSi)l—v}  (114.1)
The expression on the right of the equality sign reduces to
Ci14+8i-1—S;2+h=8,, (115)

This completes the proof.

It is clear from the expressions for 6, (i=1,2,...) that, if p is
linear, the storage rule segments 6, also are lmes,r Tt is falrly easy
to write out explicitly the algebraic expressions for the consecutive
segments. = If the marginal value function p is not linear, the storage
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rule segments are not linear, but can usually be adequately approxi-
mated%[; linear segments connecting the end points. If this approxi-
mation is felt not to be adequate, intermediate points along the
segments can be computed using the expressions derived above.

NOTE 10.—METHOD OF APPROXIMATING THE VALUE OF
THE S-AXIS INTERCEPT K OF AN OPTIMAL STORAGE
RULE (SEE PAGES 54-55)

We wish to show that the S-axis intercept k of an optimal storage
Tule can be approximated by solving the following equation for i:
k=K —aali(k), where for simplicity we substitute the symbol a for the
symbol ¢, defined on page 55, and the other symbols are defined on
page 55. ;

ith given a (by an a priori assumption about the average slope
of the optimal storage rule), the optimal rule 6 can be approximated
by the expression »

| O(S)={a(S—k) for S>k (116)

0 for S<k
Then 6-}(C)=C/a+k.

If the marginal value function is linear, we use it directly, otherwise
we approximate it by a linear function p(Y)=q—pY, where q and p
are chosen to give, at Y=Ex, the same value of p and the same slope
as that of the actual p.

With p(Y)=q—pY (actual or approximate), the basic equation
for optimality of 6 becomes:

6-1(C)=K+ (14-a)C—a L io 6(C+x)dF (x) (40)

where
K=v'/p+(1—a)q/p+aEx (40.1)

=Ex—(1—a)p(Ex)/p’(Ex)—v'[p’Ex) . (40.2)
The second expression for K is equivalent to the first, since p=—p’

(Ex) and q=p (Ex)+pEx. )
Using the approximation for 8 given by equation (116), equation

(40) becomes CJa+k=K+(1+a)C—a L " C+x—RIFE)  (403)
so that, at C=0, we have R

k=K-o | G-WIF@=K—aal)  (18)

This completes the proof.

For the case where the actual p is not linear, a closer approximation
to k, but one requiring more computational labor, can be obtained as
follows: 3
‘We have

o-l<0>=o+p—1{a {. °p[o+x—o<0+x)1dF(x>47'}‘ 117)
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Using the approximation for § given by equation (116), this becomes

C/a+k=o+'p-l{a "o tnar +
o L iop[(l—a)(C—I—x)]dF'(x)—'Y’ } (117.1)
80 that, at C=0, we have: '

| k=p'1{a f *o®)dF (x) +a f °p[(1-a)x+ak]dF(x);v'} (13 2‘)

The expression on the right side of the equality sign is a function of
k, so that the equation can be solved for k by numerical methods.
‘When p is linear, the above equation reduces to the simpler one,

k=K—aaL(k) (13.1)

NOTE 11.—THE EQUII.IBRlUM LEVEL (SEE PAGE 56)

. If (S) is continuous and 0<d4(S)/dS<r<1, then consider the
functlon

A©= [ 8(C+dPE)—C (118)

dA(C)/dC= f "6 (C4x)dF (x)— 1<T—1<0 (119)

Therefore, if A(C*)=0 for some value C*, that value is unique. But
if 8(Xmaz)> 0, then

A(0)= ﬁ " 6(x)dF (x)—0>0 (120)

-and, since dA(C)/dC<r—1, therefore C*>0 exists.
Also, for C,<C*, A(C,)>>0, that is f 8(C,+x)dF (x)>C,; but f

VO(C‘+x)dF(x) <CH*, since if this were not so, then we would have f
>'0(Ct+x)dF(x)>J; 8(C*+x)dF(x), which violates the condition that
#>0. Similarly, for C:>C*, AC)<0, that is, | “0(CHRF(RI<
C,; but L 8(C,+x)dF (x) >C*.

Hence, we have the result that EC,,, always lies between C, and C*.
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NOTE 12.—GENERALIZATION OF THE SOLUTION TO AlL-
LOW FOREXPORTS (OR IMPORTS) AND OTHER FACTORS

The basic storage-rule solution can be modified in various ways to
make it applicable to grains for which foreign trade is important.
The modification chosen for a particular application depends on the
circumstances of the particular case, on the amount of information
available, and on any possible modification in the criterion of optimal-
ity which may be required.

The simplest situation is one in which a couuntry is committed, as
by an international agreement, to export (or import) a specified
amount of the grain each year. In this case, the amount to be
exported (or imported) is subtracted from (or added to) the total
supply for the year and storage rules for the resulting domestic supply
are obtained in exactly the same way as outlined for a purely domestic
grain in the main text.

Another case is one in which foreign trade occurs in essentially free
markets. Let Q; be net exports in year t, where ‘“net’’ exports means
total exports minus total imports. Then the demand for net exports
may be written, for example, as

Qi=¢ (Py, Z¢, ug) ' (21

where ¢, is a function to be estimated empirically, P, is the domestic
price, Z; is a vector of other demand-influencing variables, say Z,=
(Zy, . . ., Zy), and uq is a random variable. Z, is written as a
vector to simplify the notation. It would presumably include among
its elements such variables as foreign incomes, defined and measured
in some relevant way, foreign supplies of the grain, transportation
costs, and so forth. If such variables can be suit,af)ly defined and
measured, and the function ¢; obtained, it may be incorporated into
the storage-rule solution in a way outlined below. In situations
where such empirical measurements are not feasible, the simplest
approach is to treat net export demand in future years as fluctuating
in a random way around a price-determined mean value, analogously
to the way random fluctuations in domestic demand were introduced
in pages 51-52.
That is, we write

Q:=4:2(Py, ug) (122)

where ¢, is a function to be estimated empirically and ugq is a random
variable whose probability distribution is estimated on the basis of
past experience, analogously to the estimation of the probability dis-
tribution of future harvests. Similarly, we have a domestic demand
function with a random component,

Y.=¢3(P;, uy) ‘ (123)

where Y, is domestic consumption. -
Combining (adding) equations (122) and (123) gives the total
demand function:

D=Y.+Q.=-¢4(Ps, up) (124)
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If we accept the total public value as measured by the area under the
total demand curve, the marginal value function p is obtained by
solving equation (124) for P,:

Pt-_—P‘(Dht, up) (125)

The optimal storage rules are then obtained in the way described in
pages 40—48, noting that in any year t the identity

D;=Yt+Qt=St—'Cc (126)
must apply, that is,
Pi=p[(S:—C4), up] (127)

‘Returning to the situation where equation (121) can be estimated,
we may assume that a more precise domestic demand function than
equation (123) is also estimatable, and write for domestic demand,

say, . _
Y,=¢5(Ps, Z, uy) (128)

where the vector Z, is expanded to include variables influencing
domestic demand as-well as those influencing foreign demand.* :
From equations (121) and (128), obtain the total demand function

. D=Y+Q:i=¢s(P:, Zs, up) . ' (129).
and solve for P, to get t;he margiha.l value function p: '
| | P=pD, Zyu) (130

or | -
Pi=0p[(S:—C), Zt, u] (131)

where the subscript D in up is dropped for simplicity.

Consider now the situation in any year t. The variable u may be
treated as known for the current year, written U,, and as a random
variable with known distribution in each future year, say u.,; (j=>0),
The problem now is the following: :

8 This notation is adopted for convenience. All it means is that some of the
elements of Z will appear with zero coefficients in equation (121), and other
elements will appear with zero coefficients in equation (128). We ignore here a
possible difficulty arising from ‘‘endogeneity’’ in some of the elements of Z, such
ag might occur, for example, in a country a large part of whose national income
depended on production or exports of the grain. One way around such a possible

ifficulty would be to. restrict the choice of variables in Z to those which are
largely exogenous and/or lagged or ‘‘predetermined”. For example, rather than
including prices of possible substitute commodities (which may be partly endo-
genous) in the demand equation, it would generally be better to use their supplies,.
which in any given year may, at least in many cases, be treated as largely pre-
determined. his also makes the resulting demand function a better approxi-
mation to the (inverse) marginal value function, as described on pages 13-15.
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Given the storage rule 6., which is Y
a) applicable in year t41; . ) |
b) a function of S.;,, Zy,, and U,y,; and
¢) optimal by the accepted criterion;
to find the storage rule 6, which is
a) applicable in year t;7 -
- b) a function of S, Z;, and U,; and
~ c¢) optimal. .

. If this problem is solved, then optimal storage rules for any num-
ber of years n can be found by the backward-iterative procedure,
starting with the n*™ year, and working back till the required namber,
of years is covered (for a finite time horizon) or until convergence is
obtained (for the case of stationarity).

' Again taking for total public value the area under the total demand
curve, we obtain as the condition for optimality of 6.(S,, Z;, Uy),
given the optimality of 0441(S¢s1, Zey1, Ueys), the following: for every
value of S,, Z, and U,, the carryover (‘i must satisfy: i

P[(St—ct); Zt; Ut]=—7'(ct)+aEP{[Ct+xt+l
=001 (CotXegny Zogry Uer))], Loy, e} (132)

where 4’ (C,) is the marginal cost of storage and the expectation oper-
ator E is taken over the distributions of x4; and u..;. (As in the
earlier solutions, if the value of C, which satisfies equation (132) is
ne%?tive, the optimal carryover is zero.)

‘equation (132) is solved for C,, then C; becomes a function of
S, Z:, U, and Z.,,. The Z,,, variables myst be eliminated, since
they are, in geuneral, not observable in period t. We introduce “ex-
pectation functions’” or “prediction equations’” as follows:

Zypap=eZy, . . « y La, Vl,) (133.1)
Z&lyk =¢k(zt1’ « o0y Zt.h vk) (133.k)
where the functions ¢, . . . , & and the distributions of the random

variables vy, . . ., Vi are to be empirically estimated.®®
Equations (133.1)— (133.k) may be summarized in vector notation as

Zoyy=e(Zy, v) ' (133)

8 The Z vector is possxalmﬂf' again e ded to include some prediction variables
in addition to those y includeg a8 demand-determining variables. A%?in
this is simply a matter of notational convenience. Those elements of Z which
are irrelevant in any particular equation are considered to have zero coefficients
therein., It may be that in one or more of equations (133.1) —(133.k), all of
Zy, ..., Zu appear with zero coeficients. If this should happen for, say, equa-
tion (133.j), it simply means that Z.s,;,; must, on the basis of available empirical
data, be treated as a random variable whose distribution is that of v;.
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_ For somewhat greater generality, we may also introduce & predic-
tion equation for output in period t41: . o

o= ex(Zs, W) (134)

where the function ¢, and the distribution of the random variable w:

are estimated empirically, and Z; now includes elements, for example

lagged prices or acreage controls, which may aid in predicting X,,,.*
Substituting (133) and (134) into (132) gives

pl(St—Cy), Z¢, Uyl=—7"(Co) +aEp{[Ci+ ex(Zs, W) —
ot-Fl(Ct.-'— CX(Zty W)y e(zt) V), uH-l)]r G(Zty V)., uﬂ-l} (135)

where the expectation operator E is taken as the integral over the
distributions of u,,;, w, and v=(v,, ..., vi). Solving equation (135)
for C, gives C, as a function of S;, Z;, and Uy,: the desired optimal
storage rule for period t:

Ct=0t(st; Zty Ut) (136)'

So far we have considered only cases where

a) the criterion of optimality is determined by taking total public
value as equal 49 the area.under the total demand: curve, and = - - -

b) exports are price-determined in a free market. The methods
can also be modified to allow for other kinds of criteria and/or possibly
other institutional arrangements. In general, we can write total
public value as a function, in each period t, of quantity consumed
domestically and (net) quantity exported, say

8= 5&(Yt, Qs) (137)

where we omit, for simplicity, the possibility of random components
and/or other determining variables; these can be reintroduced in a way
analogous to the procedures outlined.in the égreceding paragraphs.
For exam(rle, total public value might be defined as the area under the
domestic demand curve (a function of Y,) plus total revenue from ex-
ports (a function of Q.). Taking into account the identity (126),
equation (137) becomes

0= 6t[ (St_ Ct_Qt), Qt] (137-1)’

¥ In summary, then, the vector Z, consists of variables which are observable:
in period t and which:
a) affect domestic demand in period t;
b) affect net export demand in period t;
¢) affect output in period.t+1; -
d) are useful for ed»igt,lng elements of Z+,; and
€) are preferably largély exogenous or predetermined.
It is clear that most of the elements of Z, will have zero coefficients in most.
of the equations in which Z; appears.
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That is, for given S,, §, is a function of C; and Q;. There are now two
principal possibilities open, depending on the institutional setting:

a) If exports are pnce-determmed in a free market, then an addi-
tional relation between Y, and Q; is established; that is, equations
(122) and (123) can be combined (eliminating the ‘price varw.ble) to

give, say
Q:=¢:(Yy) ‘(138)

(omitting the random components for 81mp11c1ty) Combining

e(fluatlons (137), (126) and (138) gives total public value as a function
supply and carryout,

8, =05(S:, Co) (137. 2)

whlch can then be used directly in the method of pages 40—44, or, if
6 is continuous and differentiable, the meéthod of pages 44-48.

b) Alternatively, equation (137 1) may be looked on asa function
with two variables which are “controllable” by a pohcy maker ”
namely C, and Q,. This would in general imply a “two price’ system
with the necessity of adding an additional variable for the export
price, say P::

5t=3t[(sc—ot—Qt), Qty_P:] (137.3)

2 may be related to Q, by a function analogous to equations (122) or
(121), or, if the country’s exports are small relative to total world
supply, Pt may be treated as a random or partly predictable variable
independent of Q.. Then the solution proceeds by a generalization of
the method of pages 40-44; at each step the expectation operator is’
taken over the distributions of both future output and future export
f)nce and the maximization is with respect to both C and Q, thus’

ading to a set of “storage rules” and “export rules,” each of which is
& function of current supply and current export price. However, in
this case the resultmg solutlons may not always be unique.
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